
Contracts for Large Language Model APIs:
A Comprehensive Taxonomy, Detection Framework, and

Enforcement Strategies

Tanzim Hossain Romel, Kazi Wasif Amin, Istiak Bin Mahmod, Akond Rahman

October 14, 2025

DRAFT VERSION – NOT FOR OFFICIAL SUBMISSION

This document is a working draft and is not yet ready for publication or formal submission. The
content is subject to revision, and all findings should be considered preliminary.

Abstract

Large Language Model (LLM) APIs have rapidly transformed software development, yet
their integration introduces critical reliability challenges through implicit “contracts” – undoc-
umented usage protocols that, when violated, cause failures ranging from runtime errors to
silent logical bugs. We extend foundational work on machine learning API contracts [1] into
the LLM domain with three key contributions: (1) a formal probabilistic contract model cap-
turing preconditions, postconditions over output distributions, and state-transition rules with
composition guarantees; (2) a comprehensive taxonomy grounded in 650 real-world violation in-
stances mined from developer discussions across major providers (OpenAI, Anthropic, Google,
Meta) and frameworks (LangChain, AutoGPT, CrewAI, LlamaIndex, Semantic Kernel) span-
ning 2020-2025; (3) practical enforcement techniques achieving Contract Satisfaction Rate (CSR)
improvements of +18.7 percentage points (95% CI [16.2, 21.3]) and Silent Failure Rate (SFR)
reductions of -12.4 pp (95% CI [-14.1, -10.6]), with median overhead of 27ms (P95: 89ms, <8%
latency). Our taxonomy reveals 73+ distinct contract types across traditional constraints (in-
put validation, sequencing) and LLM-specific categories including output format compliance,
content policy enforcement, streaming response assembly, multimodal content handling, and
inter-agent coordination—with production systems (2024-2025) validating compositional fail-
ure modes where individually valid features violate contracts when combined. We evaluate
enforcement on 147 scenarios spanning static analysis, runtime guardrails, and framework inte-
gration, demonstrating 89% violation prevention across contract types. This work provides, to
our knowledge, the first large-scale, cross-provider, longitudinal characterization of LLM API
contracts with formal foundations and empirical validation spanning experimental prototypes
to production autonomous agent systems, offering developers, API providers, and researchers a
roadmap for building more reliable AI-augmented systems.

1 Introduction

The integration of Large Language Models (LLMs) through Application Programming Interfaces
(APIs) has fundamentally transformed modern software development. Services from OpenAI [26],
Anthropic [30], Google [31], and Meta [33] enable developers to embed sophisticated natural lan-
guage capabilities into applications with minimal effort. However, this accessibility masks a critical

1

challenge: the reliable use of LLM APIs depends on adherence to numerous implicit “contracts”
– undocumented or poorly communicated usage requirements that, when violated, lead to failures
ranging from immediate exceptions to subtle behavioral anomalies.

1.1 The Contract Challenge in LLM Systems

The concept of software contracts, formalized through Design by Contract (DbC) methodology by
Bertrand Meyer [2, 3], establishes that reliable software components must explicitly specify their
preconditions, postconditions, and invariants. Recent work by Khairunnesa et al. [1] demonstrated
that violations of such implicit contracts account for a significant portion of bugs in machine learning
libraries like TensorFlow, Scikit-learn, and PyTorch. Their analysis of 413 informal specifications
from Stack Overflow revealed that most ML API failures stem from violated assumptions about
input types, shapes, or API call ordering.

LLM APIs inherit these traditional contract challenges while introducing entirely new categories
of implicit requirements. Consider a developer building a conversational agent using OpenAI’s GPT-
4 API through LangChain [22]. The system may fail in multiple ways, as documented in numerous
GitHub issues and Stack Overflow posts [74, 34]:

1. Traditional Input Violations: Forgetting to set the API key yields an authentication error
– a classic precondition violation [81].

2. Resource Constraints: After lengthy conversation, the accumulated context exceeds the
model’s 8,192 token limit, causing truncation or rejection [35].

3. Format Non-compliance: The developer instructs the model to output JSON for database
queries, but the model occasionally responds in natural language, causing parser failures with
cryptic “Could not parse LLM output” errors [36].

4. Content Policy Triggers: A user’s seemingly innocuous request activates safety filters,
returning generic refusals that break the application flow [39].

5. Tool Invocation Failures: The agent attempts to call a non-existent tool that the model
hallucinates, causing runtime exceptions [38].

Each failure represents a violated contract that could have been documented, checked, and han-
dled gracefully. Yet these contracts remain largely implicit, forcing developers into frustrating cycles
of trial-and-error debugging, as evidenced by the proliferation of related discussions in developer
forums [76, 77].

1.2 Novel Contract Types in LLM Systems

LLM APIs introduce contract categories unprecedented in traditional software, as shown in Table 1:
Prompt and Output Format Contracts specify structural requirements for inputs and

outputs. Unlike traditional APIs with fixed schemas, LLMs accept natural language with embedded
formatting instructions, creating a dual contract: the API’s technical requirements and the model’s
instruction-following capabilities [20].

Content Policy Contracts enforce ethical and safety boundaries through automated filter-
ing. These contracts are particularly challenging because they’re often opaque – developers receive
generic error messages like “content was flagged as potentially violating our usage policy” without
clear indication of which specific terms or concepts triggered the filter [28].

2

Table 1: Novel Contract Types Introduced by LLM APIs
Contract Type Description Example Violation

Prompt/Output For-
mat

Structural requirements for inputs
and outputs

Model returns prose instead of
JSON [78]

Content Policy Ethical and safety boundaries Request flagged by content fil-
ter [39]

Multi-turn Interac-
tion

Stateful conversation management Context lost between calls [37]

Tool Calling Function invocation protocols Invalid tool schema for-
mat [41]

Token Economics Usage cost constraints Unexpected high token con-
sumption

Multi-turn Interaction Contracts govern stateful conversations and agent workflows. These
include requirements to maintain conversation history, properly sequence tool calls, and manage
context windows across multiple interactions [21]. Violating these contracts often produces subtle
failures where the system continues operating but with degraded performance or logical inconsis-
tencies.

1.2.1 Toward a Formal Contract Model

To move beyond taxonomic enumeration toward a rigorous foundation for LLM API reliability, we
introduce a formal model of probabilistic contracts that captures the unique characteristics of LLM
systems while enabling compositional reasoning and quantitative evaluation.

Definition 1 (Probabilistic LLM Contract). An LLM API contract is a tuple C =
⟨I,Pre,Post,S, π⟩ where:

• I: Interface specification defining parameters, types, and schemas (e.g., messages: List[Message],
max_tokens: int);

• Pre: Preconditions over the request, system state, and resource budgets, including:

– Type constraints: ∀p ∈ params, typeof(p) ∈ I(p)
– Value constraints: token_count(messages) ≤ model.context_limit

– Budget constraints: rate ≤ quota.requests_per_min

– Policy constraints : moderation(messages) = safe

• Post: Postconditions over distributions of outputs, reflecting LLM non-determinism:

– Format compliance: Pr[output |= schema] ≥ α

– Safety guarantees: Pr[toxicity(output) < θ] ≥ β

– Completion guarantees : Pr[finish_reason = “stop”] ≥ γ

• S: State-transition rules for multi-turn and agentic workflows:

– Conversation state: (s,m)
call−−→ (s′,m′) preserves context invariants

– Tool dependencies : allowed(ti, s) enforces valid call orderings

3

– Streaming invariants : partial outputs remain consistent across tokens

• π: Satisfaction profile specifying operational context and confidence levels, e.g.,

π = ⟨model = “gpt-4”, temperature = 0.7, α = 0.95, β = 0.99⟩

Evaluation Metrics. To quantify contract adherence empirically, we introduce three core
measures:

• Contract Satisfaction Rate (CSR): The proportion of API invocations that satisfy all
preconditions and achieve postconditions within the specified confidence bounds. Formally,

CSR(C) =
|{x ∈ X : Pre(x) ∧ Post(f(x))}|

|X|

where X is a test corpus and f is the LLM API.

• Silent Failure Rate (SFR): The proportion of violations that do not raise exceptions but
produce incorrect behavior (e.g., malformed output, lost context). High SFR indicates dan-
gerous contracts that evade immediate detection.

• Contract Overhead Budget (COB): The additional latency and token cost imposed by
contract verification. For practical adoption, we target COB < 10% of baseline latency.

Composition Rules. LLM applications chain multiple API calls (e.g., retrieval → generation
→ tool execution). We provide an assume-guarantee framework for reasoning about end-to-end
reliability:

Theorem 1 (Sequential Composition). If contract C1 guarantees output schema S with
probability α1, and contract C2 requires input schema S with probability α2, then the composed
system (C1 ◦ C2) satisfies end-to-end correctness with probability at least min(α1, α2) under inde-
pendence assumptions.

Proof sketch: Chain rule of probabilities with validation barriers. Full proof and dependency-
aware bounds appear in the extended version.

Example: Token Limit Contract (from §4.3.1).

Ctoken = ⟨{messages,max_tokens}, count(messages) + max_tokens ≤ 4096, . . .⟩

Violation probability under streaming: Pr[exceed] ≈ 0.12 without validation, < 0.01 with our
sliding-window guardrail (COB = 23ms).

This formal model grounds our taxonomy (Section 4), guides our mining methodology (Sec-
tion 3), and structures our enforcement evaluation (Section 5). It also enables future work on
automated contract inference, compositional verification, and cross-model contract portability.

1.3 Research Objectives and Contributions

This paper systematically investigates the question: “What kinds of contracts do LLM APIs need?”
– extending the inquiry posed by Khairunnesa et al. [1] for traditional ML APIs. We make four key
contributions:

4

1.3.1 1. Automated Contract Discovery Methodology

We develop a scalable pipeline that leverages LLMs themselves to mine contract specifications
from diverse sources including API documentation, Stack Overflow discussions, GitHub issues, and
community forums. This methodology, detailed in Section 3, employs three stages: (i) relevance
filtering using semantic search and LLM classification, (ii) contract extraction through pattern
matching and natural language processing [5], and (iii) taxonomic classification using iteratively
refined categories. This approach processes over 10,000 documents, yielding 650 validated contract
violation instances spanning 2020-2025.

1.3.2 2. Comprehensive Contract Taxonomy

We present a hierarchical taxonomy extending prior ML API contract classifications [1] with LLM-
specific categories. The taxonomy, presented in Section 4, encompasses traditional contracts (data
types, value constraints, temporal ordering) and novel categories including structured input for-
mats, output compliance specifications, content policy requirements, and multi-model interaction
protocols. Each category is grounded in empirical evidence from real-world violations.

1.3.3 3. Empirical Analysis of Contract Violations

Through quantitative analysis of our dataset, detailed in Section 4.2, we reveal the distribution,
frequency, and impact of contract violations across the LLM ecosystem. Key findings include:

• 60% of violations involve basic input issues (types, missing fields, value ranges)

• 20% are LLM-specific (output format, content policy)

• OpenAI platforms exhibit the full spectrum of contract violations

• Integration frameworks (LangChain, AutoGPT) primarily face format-related issues

• 50% of violations cause immediate errors, while 35% result in silent failures

1.3.4 4. Practical Enforcement Strategies

We demonstrate techniques for automated contract verification tailored to LLM APIs (Section 5),
including:

• Static analysis rules for common violations (token limits, parameter types) [23]

• Runtime guardrails for output validation and content filtering [20]

• Framework integration patterns for contract-aware development

• Evaluation showing 85% error reduction with <5% performance overhead

1.4 Scope and Organization

This work focuses on LLM APIs providing text generation capabilities, though findings also apply
to multimodal systems (image generation, vision models) where relevant. We explicitly exclude
model quality issues (factual accuracy, reasoning capabilities) to focus on functional correctness
and adherence to usage specifications.

5

The remainder of this paper is organized as follows: Section 2 provides background on soft-
ware contracts and related work. Section 3 details our methodology for contract discovery and
classification. Section 4 presents our taxonomy and Section 4.2 provides empirical results. Sec-
tion 5 discusses enforcement techniques and their evaluation. Section 6 examines implications for
stakeholders. Section 7 outlines future research directions, and Section 8 concludes.

2 Background and Related Work

Understanding LLM API contracts requires grounding in three research areas: design by contract
principles, API specification mining, and LLM-specific challenges. This section synthesizes relevant
work to establish the foundation for our contributions.

2.1 Design by Contract and Software API Specifications

2.1.1 Foundational Principles

Design by Contract (DbC), introduced by Bertrand Meyer in the Eiffel programming language [2],
establishes that software reliability depends on explicit contracts between components. Meyer’s
seminal work [3] defines three key elements:

• Preconditions: Requirements that callers must satisfy before invocation

• Postconditions: Guarantees the module provides upon successful completion

• Invariants: Properties maintained throughout the module’s lifetime

When preconditions are violated, the fault lies with the caller; when postconditions fail de-
spite valid inputs, the implementation is defective. This clear assignment of responsibility enables
systematic debugging and verification [4].

Modern languages incorporate DbC through various mechanisms: Java’s assertions and JML
(Java Modeling Language), Python’s contract libraries, and C#’s Code Contracts. However, most
API contracts remain informal, documented in natural language rather than machine-checkable
specifications.

2.1.2 API Contract Violations in Practice

Empirical studies reveal that contract violations cause substantial portions of API-related bugs.
Zhang et al. [6] found that 20% of Java API bugs stem from violated preconditions. For web
APIs, incomplete documentation leads developers to make incorrect assumptions about required
parameters, data formats, and call sequences.

The challenge intensifies with complex APIs. REST services may document that certain fields
are required in JSON requests, but edge cases (null values, empty strings, special characters) often
remain unspecified. Similarly, stateful APIs require specific call orderings that are rarely formally
documented, leading to runtime failures when developers invoke methods out of sequence.

2.2 Machine Learning API Contracts

2.2.1 The Khairunnesa Study

Khairunnesa et al.’s seminal work “What Kinds of Contracts Do ML APIs Need?” [1] analyzed
413 potential contracts from Stack Overflow discussions about TensorFlow, Scikit-learn, Keras, and
PyTorch. They identified three primary contract categories, summarized in Table 2:

6

Table 2: ML API Contract Categories from Khairunnesa et al. [1]
Category Subcategory Description

Single API Method (SAM)
Data Type (DT) Expected types for parameters
Value Constraints (BET) Value ranges and constraints
Missing Information (MI) Required but undocumented parameters

API Method Order (AMO)
Initialization Setup sequences
State Management State dependencies between calls
Resource Lifecycle Resource allocation/deallocation order

Hybrid (H) Conditional If-then relationships
Alternative Either-or requirements

Their quantitative analysis revealed that 65% of violations involved SAM contracts (primarily
type and value issues), 30% involved AMO contracts, and 5% were hybrid. This distribution guided
tool development priorities, focusing on type checking and value validation.

2.2.2 ML-Specific Contract Challenges

ML APIs introduce domain-specific contracts absent from traditional software:
Tensor Shape Compatibility: Operations require compatible dimensions (matrix multipli-

cation needs matching inner dimensions). These contracts are often discovered through runtime
failures rather than documentation.

Numerical Stability Requirements: Certain operations require normalized inputs or positive-
definite matrices. Violating these mathematical prerequisites causes convergence failures or numer-
ical exceptions.

Hardware-Software Contracts: GPU operations impose additional constraints on memory
layout and data types. Moving tensors between CPU and GPU requires explicit synchronization
that developers often overlook.

Training State Dependencies: Many operations behave differently during training versus
inference (dropout, batch normalization). Failing to set the correct mode violates implicit behavioral
contracts.

2.3 Automated API Specification Mining

2.3.1 Natural Language Processing Approaches

Researchers have developed techniques to automatically extract API specifications from documen-
tation and forums:

Pandita et al. [5] introduced ACE, which parses API documentation to infer formal specifications
using natural language patterns. For instance, “must be non-null” translates to a precondition check.
Their follow-up work [7] extended this to resource specifications.

Tan et al.’s @tComment [9] analyzes code comments to detect comment-code inconsistencies,
effectively mining contracts from developer annotations.

Zhou et al. [10] developed APIReal, which mines API usage rules from Stack Overflow by
identifying problem-solution patterns in accepted answers. Their analysis of 1.9M Stack Overflow
posts revealed common API misuse patterns [11].

7

2.3.2 Statistical and Dynamic Approaches

Dynamic specification mining observes program execution to infer likely invariants:
Daikon [12] pioneered dynamic invariant detection by instrumenting programs and generalizing

from observed values. The tool has been successfully applied to discover API contracts in large
codebases [13].

Pradel and Gross’s JADET [14] learns API usage patterns from large codebases, identifying
anomalous usages that likely violate implicit contracts.

Nguyen et al.’s GROuMiner [15] mines graph-based object usage models, capturing temporal
patterns in API interactions. MAPO [8] extends this by recommending API usage patterns.

2.3.3 Machine Learning for Specification Mining

Recent work leverages ML for specification extraction:
DeepAPI by Gu et al. [16] learns API usage patterns from code repositories using sequence-to-

sequence models. Their evaluation on 10 million Java method bodies demonstrated accurate API
sequence generation.

Malik et al.’s NL2Spec [17] translates natural language requirements to formal specifications
using transformer models, achieving high accuracy on temporal logic specifications.

Our work extends these approaches by using LLMs to understand and categorize contract vio-
lations described in natural language, enabling analysis at unprecedented scale.

2.4 LLM API Challenges and Current Practices

2.4.1 Documented LLM API Issues

Provider documentation and community discussions reveal recurring challenges, summarized in
Table 3:

Table 3: Common LLM API Challenges and Their Manifestations
Challenge Description Common Error Messages

Token Limits Context length restrictions “maximum context length is
4096 tokens” [74]

Rate Limiting Request frequency limits “Error 429: Too Many Re-
quests” [75]

Format Compliance Output structure violations “Could not parse LLM out-
put” [36]

Content Filtering Safety system triggers “content policy violation” [39]
Model Versioning Version-specific behaviors “model not found” [42]
Authentication API key issues “No API key provided” [81]

Token Limits and Context Management: Every LLM has maximum context lengths (4,096
for GPT-3.5, 8,192 for GPT-4, 100,000+ for Claude) [26, 30]. Developers frequently encounter errors
when accumulated conversation history exceeds these limits [34]. The challenge compounds because
token counting differs from character counting, and tokenization varies across models.

Rate Limiting and Quotas: APIs enforce request frequency limits (e.g., 20 requests/minute
for OpenAI’s free tier) and token quotas [27]. Applications must implement exponential backoff and
quota tracking to handle these gracefully [80].

8

Format Instruction Compliance: Despite explicit instructions, LLMs don’t always produce
outputs in requested formats. A prompt requesting JSON might yield natural language, breaking
downstream parsers [76]. This probabilistic non-compliance is unprecedented in traditional APIs.

Content Filtering False Positives: Safety systems sometimes flag benign content, particu-
larly in educational or creative contexts [28]. Medical discussions, historical topics, or fiction writing
can trigger filters, causing application failures.

Model Version Dependencies: Each model version has unique characteristics – deprecated
models return errors, newer versions have different tokenizers or instruction formats. Azure OpenAI
requires explicit API version specification, adding another contract dimension [32].

2.4.2 Emerging Tools for LLM Contract Enforcement

The community has developed tools addressing specific contract categories:
Guardrails AI [20] provides a framework for specifying and enforcing output schemas. Devel-

opers define expected formats using XML or Pydantic models, and the library automatically retries
with corrective prompts when outputs don’t comply. GitHub repository: https://github.com/
guardrails-ai/guardrails

Microsoft Guidance [21] offers a templating language that interleaves generation with val-
idation, ensuring outputs match specified patterns through constrained generation. Available at:
https://github.com/guidance-ai/guidance

LangChain OutputParsers [22] implement retry logic for format violations, automatically re-
prompting when parsing fails. Documentation: https://python.langchain.com/docs/concepts/
output_parsers/

OpenAI’s Moderation API [28] enables pre-screening content before submission, proactively
enforcing content policy contracts. API reference: https://platform.openai.com/docs/guides/
moderation

Prompt Testing Frameworks like Promptfoo [24] (https://github.com/promptfoo/promptfoo)
and PromptLayer [25] (https://github.com/MagnivOrg/prompt-layer-library) enable system-
atic testing of prompt behavior across different inputs and models.

However, these tools address specific contract types in isolation. No comprehensive framework
exists for identifying, documenting, and enforcing the full spectrum of LLM API contracts.

2.5 Research Gap

Despite extensive work on software contracts, API mining, and LLM tools, no prior research has:

1. Systematically catalogued the complete range of LLM API contracts

2. Quantified the prevalence and impact of different contract violations

3. Developed unified frameworks for LLM contract enforcement

4. Compared LLM contracts with traditional ML API contracts

This paper addresses these gaps through empirical analysis and practical tool development.

3 Methodology

Our methodology combines automated mining with manual validation to discover and classify LLM
API contracts at scale. This section details our data collection, extraction pipeline, taxonomy
development, and analysis techniques.

9

https://github.com/guardrails-ai/guardrails
https://github.com/guardrails-ai/guardrails
https://github.com/guidance-ai/guidance
https://python.langchain.com/docs/concepts/output_parsers/
https://python.langchain.com/docs/concepts/output_parsers/
https://platform.openai.com/docs/guides/moderation
https://platform.openai.com/docs/guides/moderation
https://github.com/promptfoo/promptfoo
https://github.com/MagnivOrg/prompt-layer-library

3.1 Overview

Figure 1 illustrates our methodology pipeline, consisting of six stages:

1. Raw Sources
10,000+ documents

2. Relevance Filtering
2,500 relevant

Stack Overflow, GitHub,
Forums, Docs

3. Contract Extraction
623 instances

LLM semantic
filtering

4. Classification &
Taxonomy Development

Pattern matching
+ NLP

5. Validation
94% accuracy

Iterative
refinement

6. Analysis & Insights Inter-rater
agreement

Quantitative
analysis

Figure 1: Methodology for discovering and analyzing LLM API contracts

3.2 Data Collection

We gathered data from diverse sources to capture the full spectrum of LLM API usage scenarios,
as shown in Table 4:

Table 4: Data Sources for Contract Discovery
Source Type Documents Relevant Example URLs

Stack Overflow 3,847 238 stackoverflow.com/questions/tagged/openai-api
GitHub Issues 2,156 197 github.com/langchain-ai/langchain/issues
OpenAI Forum 1,243 95 community.openai.com
Reddit 892 42 reddit.com/r/OpenAI
Documentation 1,862 51 platform.openai.com/docs

Total 10,000 623

3.2.1 Online Forums and Q&A Platforms

Stack Overflow: We queried for posts tagged with “openai-api”, “gpt-3”, “gpt-4”, “langchain”,
“anthropic-claude”, and related terms. After filtering for relevance, we collected 238 Q&A threads
from 2020-2024 containing error descriptions, troubleshooting discussions, and best practice ad-
vice. Notable examples include token limit errors [74], JSON parsing issues [76], and rate limiting
problems [79].

10

stackoverflow.com/questions/tagged/openai-api
github.com/langchain-ai/langchain/issues
community.openai.com
reddit.com/r/OpenAI
platform.openai.com/docs

OpenAI Developer Forum: We scraped 95 threads from the official forum’s API Support
and Prompting categories, focusing on error reports and unexpected behaviors [29].

Reddit Communities: We analyzed 42 discussions from r/OpenAI, r/LocalLLaMA, and
r/LangChain containing detailed error descriptions and solutions.

3.2.2 GitHub Issue Trackers

We mined issues from major LLM integration projects:

• LangChain: 48 issues related to parsing errors [36], tool usage failures [38], and chain exe-
cution problems

• AutoGPT: 12 issues about infinite loops [44], JSON parsing failures, and tool invocation
errors

• LlamaIndex: 9 issues concerning index size limits and vector store constraints [46]

• Guidance: 7 issues about template validation and constrained generation failures

• Guardrails-AI: 5 issues about schema validation and retry logic

3.2.3 Official Documentation

We systematically reviewed:

• OpenAI API Reference and Error Codes Guide [26]

• Anthropic Claude API Documentation [30]

• Google PaLM/Gemini API Specifications [31]

• Azure OpenAI Service Documentation [32]

• Meta LLaMA usage guidelines [33]

3.2.4 Blog Posts and Tutorials

We analyzed 35 technical blog posts and tutorials that discussed common pitfalls, debugging strate-
gies, and best practices for LLM API usage.

3.3 Relevance Filtering

Given the large volume of collected data (over 10,000 documents initially), we implemented a two-
stage filtering process:

3.3.1 Keyword-Based Filtering

We first applied regex patterns to identify potentially relevant content:

• Error indicators: “error”, “exception”, “failed”, “invalid”

• Contract terms: “must”, “required”, “should”, “cannot”, “constraint”

• API-specific terms: “token limit”, “rate limit”, “content policy”, “format”, “schema”

This reduced our dataset to approximately 2,500 documents.

11

3.3.2 LLM-Based Semantic Filtering

We used GPT-3.5 to assess relevance through semantic understanding. For each document, we
prompted:

1 prompt = """
2 Analyze␣this␣text␣and␣determine␣if␣it␣describes:
3 1.␣A␣requirement␣or␣constraint␣for␣using␣an␣LLM␣API
4 2.␣An␣error␣caused␣by␣incorrect␣API␣usage
5 3.␣A␣best␣practice␣that␣implies␣a␣usage␣rule
6

7 Text:␣{document_text}
8

9 Response␣format:
10 -␣Relevant:␣Yes/No
11 -␣Category:␣[Requirement/Error/BestPractice/Other]
12 -␣Summary:␣Brief␣description␣if␣relevant
13 """

Listing 1: LLM Relevance Assessment Prompt

This stage identified 623 highly relevant documents containing explicit or implicit contract in-
formation.

3.4 Contract Extraction

We developed a multi-strategy approach to extract contract statements from relevant documents:

3.4.1 Pattern-Based Extraction

We defined linguistic patterns that typically indicate contracts:

• Prescriptive statements: “You must X”, “X is required”, “Always Y”

• Prohibitive statements: “Cannot X”, “X is not allowed”, “Never Y”

• Conditional statements: “If X then Y”, “When X, ensure Y”

• Error explanations: “This error occurs when X”, “Failed because Y”

3.4.2 LLM-Assisted Extraction

For complex discussions, we employed GPT-4 to identify implicit contracts:

1 prompt = """
2 Extract␣any␣API␣usage␣rules␣from␣this␣discussion.
3 Focus␣on:
4 -␣Explicit␣requirements␣mentioned
5 -␣Implicit␣assumptions␣that␣caused␣errors
6 -␣Solutions␣that␣reveal␣constraints
7

8 Format␣each␣rule␣as:
9 RULE:␣[Clear␣statement␣of␣the␣contract]

10 EVIDENCE:␣[Quote␣or␣paraphrase␣supporting␣this]
11 CATEGORY:␣[Input/Output/Temporal/Policy/Other]

12

12 """

Listing 2: Contract Extraction Prompt

3.4.3 Validation and Deduplication

We manually reviewed extracted contracts to:

• Verify accuracy against source material

• Merge duplicate or near-duplicate statements

• Standardize phrasing for clarity

• Add metadata (API provider, framework, error type)

This process yielded 612 unique contract instances across 73 distinct contract types from our
initial collection period (2020-2024).

3.4.4 Extended Collection: Production Agent Frameworks (2024-2025)

To validate our taxonomy’s applicability to production-scale autonomous agent systems, we con-
ducted a targeted analysis of contract violations in major agent frameworks that emerged post-
ChatGPT. We systematically analyzed GitHub issues from:

• LangChain/LangGraph: Multi-agent orchestration, streaming, structured outputs (6 is-
sues)

• CrewAI: Hierarchical multi-agent systems, inter-agent communication (5 issues)

• LlamaIndex: RAG pipelines, embedding systems, structured outputs (5 issues)

• Semantic Kernel: Enterprise agent frameworks, type system enforcement (6 issues)

• AutoGPT: Autonomous agents, multimodal processing (2 issues)

• Supporting tools: DataDog tracing, LangChainJS, LangChain-AWS (3 issues)

This analysis yielded 38 additional contract violation instances, bringing our total dataset to
650 instances across 73 contract types. Critically, these production-scale violations mapped
directly onto our existing taxonomy, validating its extensibility while revealing compositional failure
modes where individually valid features (streaming + validation, structured output + function
calling, async + sync execution) violate contracts when combined—a pattern largely absent from
simpler prototype systems.

3.5 Taxonomy Development

We iteratively developed our taxonomy through a combination of deductive and inductive ap-
proaches, refined across both collection periods:

13

3.5.1 Initial Framework

Starting with Khairunnesa et al.’s ML API taxonomy [1], we established three top-level categories:

1. Single API Method (SAM) contracts

2. API Method Order (AMO) contracts

3. Hybrid (H) contracts

3.5.2 Iterative Refinement

Two researchers independently classified a sample of 100 contract instances. Through discussion of
disagreements, we identified needs for new subcategories, detailed in Table 5:

Table 5: Taxonomy Development Process
Category New Subcategory Justification

SAM Structured Type (ST) JSON message formats unique to LLMs
SAM Output Format (OF) Expected response structures
SAM Policy Compliance (PC) Content restrictions
AMO Conversation Management (CM) Context handling requirements
Hybrid Conditional Constraints (CC) Complex if-then relationships

3.5.3 Inter-rater Agreement

After finalizing categories, both researchers independently classified all 612 instances from the ini-
tial collection. We achieved Cohen’s kappa = 0.87, indicating strong agreement. Disagreements
were resolved through discussion, often revealing instances that belonged to multiple categories.
The 38 instances from the 2024-2025 production frameworks were classified using the established
taxonomy by one researcher and validated by the second, with 100% agreement on category assign-
ments—confirming the taxonomy’s applicability to evolved production systems.

3.6 Quantitative Analysis

We performed multiple analyses to understand contract violation patterns:

3.6.1 Frequency Analysis

We computed the distribution of contract violations across categories and subcategories, comparing
with Khairunnesa et al.’s ML API findings to identify LLM-specific patterns.

3.6.2 Ecosystem Analysis

We segmented data by multiple dimensions, shown in Table 6:

14

Table 6: Ecosystem Segmentation for Analysis
Dimension Count Examples

API Provider
OpenAI 342 GPT-3.5, GPT-4, DALL-E
Anthropic 31 Claude, Claude-2
Google 22 PaLM, Gemini
Azure 47 Azure OpenAI Service
Open-source 28 LLaMA, Mistral

Framework
LangChain 89 Chains, Agents, Tools
AutoGPT 23 Autonomous agents
Direct API 420 Raw API calls
Other 80 Custom frameworks

Time Period
Pre-ChatGPT 156 Before Nov 2022
Post-ChatGPT 456 After Nov 2022

3.6.3 Impact Assessment

We categorized violation consequences:

• Immediate Errors (307 instances): Exceptions, HTTP errors

• Silent Failures (214 instances): Incorrect behavior without errors

• Performance Degradation (91 instances): Increased latency, costs

3.6.4 Statistical Testing

We used chi-square tests to assess whether observed differences (e.g., between providers) were sta-
tistically significant, though we acknowledge limitations of observational data.

3.7 Validation Strategies

3.7.1 Source Verification

One researcher not involved in extraction reviewed 50 randomly selected contract instances, ver-
ifying them against original sources. Agreement was 94% (47/50), with minor discrepancies in
interpretation rather than factual errors.

3.7.2 Practitioner Review

We shared our taxonomy and examples with 5 experienced LLM application developers. All con-
firmed that the categories matched their experiences, with suggestions for additional subcategories
that we incorporated.

15

3.7.3 Reproducibility Check

We documented all prompts, patterns, and classification criteria. A third researcher successfully
reproduced contract extraction for a subset of 20 documents, achieving 85% overlap with original
extractions.

3.8 Limitations

Our methodology has several limitations that we acknowledge:
Sampling Bias: We analyze publicly discussed issues, potentially missing problems developers

solve privately or consider too basic to post about.
Temporal Bias: The LLM API landscape evolves rapidly. Some contracts may be version-

specific or already obsolete.
LLM Extraction Reliability: Using LLMs to analyze LLM problems introduces potential

circularity. We mitigate through human validation but cannot eliminate all bias.
Generalization Limits: Our findings primarily reflect the OpenAI ecosystem (56% of in-

stances). Other providers may have different contract profiles.
Despite these limitations, our methodology provides the most comprehensive analysis of LLM

API contracts to date, establishing a foundation for future research and tool development.

4 Results: Taxonomy and Empirical Findings

This section presents our taxonomy of LLM API contracts and empirical analysis of violation pat-
terns across the ecosystem.

4.1 A Comprehensive Taxonomy of LLM API Contracts

Figure 2 presents our hierarchical taxonomy, extending traditional API contract categories with
LLM-specific classifications.

LLM API
Contracts

Single API Method
(SAM - 72%)

API Method Order
(AMO - 22%)

Hybrid
(H - 6%)

Data Type
(26%)

Value
Constraints
(32%)

Output
Constraints

(9%)

RAG
Contracts
(8%)

Compatibility
& Modes
(5%)

Multimodal
& Encoding

(3%)

Initialization
(7%)

Sequencing
(6%)

State Mgmt
(3%)

Streaming
& Async
(6%)

Conditional
(2%)

Alternative
(1%)

Tool
Contracts
(2%)

Economic &
Governance

(1%)

Primitive
(7%)

Built-in
(13%)

Structured
(8%)

Single
Param
(24%)

Multi-
Param
(11%)

Format
Req.
(6%)

Policy
Comp.
(4%)

Retrieval
Contracts
(5%)

Grounding
Contracts
(3%)

Model/Version
Compatibility

(2%)

Feature/Mode
Mutual Exclusion

(1.5%)

Reproducibility
Contracts
(1%)

Telemetry
Shape
(0.5%)

Multimodal
Payload
(2%)

Locale &
Encoding
(1%)

Embedding/
Index Compat.

(2%)

Top-k
Bounds
(1.5%)

Retrieval
Freshness
(1.5%)

Citation
Req.
(1.5%)

Hallucination
Guards
(1%)

Empty
Retrieval
(0.5%)

SSE
Semantics
(2.5%)

Async Job
Lifecycle
(2%)

Session/Thread
Identity
(1.5%)

Registry
Membership

(1%)

Call Budget
& Loop Guard

(1%)

Budget/SLO
Contracts
(0.5%)

Data Gov.
& Privacy
(0.3%)

Idempotency
(0.2%)

Figure 2: Hierarchical taxonomy of LLM API contracts with prevalence percentages

4.1.1 Single API Method (SAM) Contracts

SAM contracts dominate our dataset (72%), encompassing constraints on individual API calls.
With the expanded taxonomy, we identify six major subcategories spanning traditional type/value
constraints, LLM-specific output requirements, RAG system contracts, compatibility concerns, and
multimodal payloads. Table 7 provides detailed examples:

Data Type Contracts (28%) specify expected parameter types:

16

Table 7: Examples of Single API Method Contracts
Category Contract Statement Example Viola-

tion
Source

Data Type Contracts (28%)
Primitive temperature must be float Passing string "0.7" [26]
Built-in messages must be array Passing single mes-

sage object
[84]

Structured Message needs role+content Missing role field [36]

Value Constraints (35%)
Single Param tokens model maximum 5000 tokens for

GPT-3.5 (4096 max)
[74]

Multi-Param if stream=true, then n=1 stream=true with
n=5

[26]

Output Constraints (15%)
Format Output must be valid JSON Returns prose in-

stead
[78]

Policy No prohibited content Flagged for safety [39]

• Primitive Types (7%): Basic types like strings for prompts, integers for token counts, floats
for temperature [26]

• Built-in Types (13%): Lists for batch processing, dictionaries for structured inputs [85]

• Structured Types (8%): Complex objects like message arrays with role-content pairs, function
definitions with parameter schemas [40]

Example violation: Passing a string prompt to ChatCompletion API instead of the required
message array format causes “Invalid request format” errors [84].

Value Constraints (35%) restrict parameter ranges and content:

• Single Parameter (24%): Token limits (prompt + completion model maximum), temperature
[0, 2], top_p [0, 1] [34]

• Multi-Parameter (11%): Interdependent constraints like “if stream=true, then n must equal
1” [86]

Example violation: Exceeding token limits yields “This model’s maximum context length is 4096
tokens” errors [74].

Output Constraints (15%) - a category largely absent from traditional APIs:

• Format Requirements (9%): Model must produce JSON, XML, or specific text patterns [20]

• Policy Compliance (6%): Output must not contain prohibited content [28]

Example violation: Model returns natural language despite JSON instruction, causing parser
failures [36].

Compatibility & Modes Contracts (5%) - emerging category for model versioning and
configuration:

17

• Model/Endpoint/Version Compatibility (2%): Endpoints must support requested model names
(e.g., gpt-4-turbo requires specific endpoint versions); deprecated models return 404 er-
rors [26]

• Feature/Mode Mutual Exclusion (1.5%): Certain parameters cannot coexist (e.g., tools
and functions are mutually exclusive in newer API versions; response_format={"type":
"json_object"} incompatible with some older models)

• Reproducibility Contracts (1%): Setting seed parameter requires specific model versions and
may still yield non-deterministic results across infrastructure changes [26]

• Telemetry Shape Contracts (0.5%): Streaming callbacks and custom metrics hooks must con-
form to expected signatures

Example violation: Attempting to use gpt-4-vision-preview with text-only endpoint causes
model routing errors.

Multimodal & Encoding Contracts (3%) - constraints for non-text modalities:

• Multimodal Payload Constraints (2%): Image inputs must be base64-encoded or valid URLs;
video modalities require specific frame rates and resolutions; audio must meet sample rate
requirements (e.g., Whisper expects 16kHz) [26]

• Locale & Encoding Contracts (1%): Text encoding (UTF-8 required for most providers);
locale-specific formatting for dates, numbers; right-to-left text handling for Arabic/Hebrew
prompts

Example violation: Passing raw image bytes instead of base64-encoded string causes “Invalid
image format” errors in GPT-4V requests.

4.1.2 API Method Order (AMO) Contracts

Temporal contracts (22%) govern call sequences and stateful interactions. The expanded taxon-
omy includes traditional sequencing contracts plus emerging patterns for streaming responses and
asynchronous job management. Table 8 details core examples:

Table 8: Examples of API Method Order Contracts
Category Contract Statement Example Viola-

tion
Source

Initialization Set API key before calls Calling without auth [81]
Sequencing Upload file before fine-tuning Starting job without

data
[26]

State Manage-
ment

Include conversation history Omitting prior mes-
sages

[37]

Initialization (8%): API keys, environment setup, model loading [43] Example: Calling API
without setting authentication yields “No API key provided” errors [83].

Sequencing (7%): Multi-step processes like fine-tuning workflows Example: Attempting to
query fine-tuning job status before creation fails.

State Management (3%): Conversation history, session handling Example: Omitting con-
versation history causes context loss in multi-turn interactions [38].

Streaming & Async Contracts (6%) - temporal contracts for long-running operations:

18

• Server-Sent Events (SSE) Semantics (2.5%): When stream=true, responses arrive as SSE
chunks with data: [DONE] terminator; clients must handle partial JSON assembly and con-
nection timeouts [26]

• Async Job Lifecycle (2%): Long operations (fine-tuning, batch processing, embeddings gen-
eration) require polling with exponential backoff; jobs transition through states queued →
running → succeeded|failed|cancelled

• Session/Thread Identity (1.5%): Assistants API requires explicit thread_id management;
messages within threads must maintain chronological ordering; abandoned threads consume
quota until explicitly deleted

Example violation: Attempting to parse incomplete SSE chunks as full JSON objects causes
“Expecting value” JSON decode errors; failing to poll async jobs leads to silent timeouts.

4.1.3 Hybrid Contracts

Complex constraints (6%) spanning multiple contract dimensions. This category captures cross-
cutting concerns including conditional logic, tool/function calling orchestration, and resource gov-
ernance policies:

Conditional (2.5%): If-then relationships Example: “If using functions, must provide function
definitions” [41]

Alternative (1.5%): Either-or requirements Example: “Provide either system message or user
instruction, not both”

Tool Contracts (2%) - constraints governing function/tool calling:

• Tool Registry Membership (1%): Invoked tools must exist in provided tool definitions; tool
names must be valid identifiers; parameter schemas must conform to JSON Schema Draft
2020-12 [26]

• Tool-Call Budget & Loop Guard (1%): Maximum tool invocations per turn (typically 5-10);
infinite loop detection when tool repeatedly returns same error; budget exhaustion handling

Example violation: LLM attempts to call search_database when only search_web was regis-
tered, causing “Tool not found” errors in agent frameworks [38].

Economic & Governance Contracts (1%) - resource and compliance constraints:

• Budget/SLO Contracts (0.5%): Monthly spending caps; per-request latency requirements
(e.g., streaming first token < 1s); throughput guarantees for batch operations

• Data Governance & Privacy (0.3%): GDPR compliance for EU data residency; HIPAA re-
quirements for healthcare applications; data retention policies (e.g., zero data retention for
API calls vs 30-day logging for fine-tuning)

• Idempotency Contracts (0.2%): Retry-safe operations using idempotency-key headers; deter-
ministic outputs for same inputs (when feasible with temperature=0)

Example violation: Exceeding monthly token budget triggers billing alerts and potential API
suspension; violating data residency requirements (e.g., routing EU user data through US endpoints)
causes compliance failures.

19

4.2 Empirical Analysis of Contract Violations

4.2.1 Overall Distribution

Table 9 compares contract violation distributions between LLM and traditional ML APIs using our
initial collection (n=612, 2020-2024). This baseline comparison established fundamental differences
between LLM and ML API contracts, which our extended analysis (2024-2025, +38 instances)
subsequently validated across production autonomous agent systems.

Data Type Value
Constraints

Output
Constraints

Temporal/
Order

Hybrid

Contract Category

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

) w
ith

 9
5%

 C
I

28%

35%

15%

18%

4%

31%

34%

2%

28%

5%

**

Error bars: 95% Wilson score confidence intervals
*** p < 0.001, ** p < 0.01, NS = Not Significant

ML API data from Khairunnesa et al. (2023)

Contract Violation Distribution: LLM vs ML APIs
(with Wilson Score Confidence Intervals)

LLM APIs (n=612)
ML APIs (n=500)

Figure 3: Contract Violation Distribution: LLM vs ML APIs

Table 9: Contract Violation Distribution: LLM vs ML APIs (Data Table)
Contract Category LLM APIs (%) ML APIs (%)* Statistical Significance

Data Type 28 31 p = 0.42 (NS)
Value Constraints 35 34 p = 0.79 (NS)
Output Constraints 15 2 p < 0.001
Temporal/Order 18 28 p < 0.01
Hybrid 4 5 p = 0.55 (NS)
*From Khairunnesa et al. [1], NS = Not Significant

LLM

APIs: n=612 from initial collection (2020-2024). Extended validation (2024-2025, +38 instances) confirmed these
distributional patterns held across production systems.

Key observations:

• Output constraints emerge as a major category (15% vs 2%), reflecting LLM-specific chal-
lenges

20

• Temporal constraints are less prevalent (18% vs 28%), suggesting simpler interaction pat-
terns

• Input constraints (Data Type + Value) remain dominant (63%), indicating persistent basic
integration challenges

4.2.2 Provider-Specific Patterns

Table 10 shows violation distribution across major providers:

OpenAI
(n=342)

Anthropic
(n=31)

Google
(n=22)

Azure
(n=47)

Open-source
(n=28)

Provider

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

26%
32%

23%
28%

21%

38%

35%

41%
36%

46%

13% 10%
9%

15% 7%

19% 16% 23%
17%

21%

7%

Contract Violations by Provider (Stacked)
Data Type
Value
Output
Temporal
Hybrid

Data Type Value Output Temporal Hybrid
Contract Category

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

) w
ith

 9
5%

 C
I

Contract Violations by Category (Grouped)
with Wilson Score Confidence Intervals

OpenAI
Anthropic
Google
Azure
Open-source

Figure 4: Contract Violations by Provider

Table 10: Contract Violations by Provider (Data Table)
Provider n Data Type Value Output Temporal Hybrid

OpenAI 342 26% 38% 13% 19% 4%
Anthropic 31 32% 35% 10% 16% 7%
Google 22 23% 41% 9% 23% 4%
Azure 47 28% 36% 15% 17% 4%
Open-source 28 21% 46% 7% 21% 5%

Sample from initial

collection (2020-2024). Extended analysis (2024-2025) added 38 instances across frameworks.

Provider-specific insights:

• OpenAI: Shows the full spectrum, with notable policy violations (8% of output constraints) [39]

• Anthropic: Higher proportion of data type issues, possibly due to unique prompt format
requirements [30]

• Google: Dominated by value constraints, particularly model selection and parameter ranges

• Azure: Similar to OpenAI but with additional API version requirements [32]

• Open-source: Fewer policy issues but more value constraints (memory limits)

21

4.2.3 Framework-Level Analysis

Integration frameworks exhibit distinct violation patterns, shown in Table 11:

LangChain AutoGPT Direct API Custom
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 o

f M
os

t C
om

m
on

 V
io

la
tio

n

45%
(n=89)

52%
(n=23)

40%
(n=420) 38%

(n=80)

Most Common Contract Violation by Framework

Output Format
Value Constraints
Data Type

Output Format
45%

Data Type
23%

Temporal
20%

Other
12%

LangChain (n=89)

Output Format
52%

Temporal
26%

Value Const.
22%

AutoGPT (n=23)

Value Const.
40%

Data Type
30%

Temporal
20%

Output
10%

Direct API (n=420)

Output Format Data Type Value Const. Temporal Other
Violation Category

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

Detailed Breakdown by Framework and Category
LangChain AutoGPT Direct API Custom

Figure 5: Contract Violations by Framework

Framework-specific patterns:
LangChain (89 instances):

• 45% output format violations (parsing failures) [36]

• 23% data type issues (incorrect chain inputs)

• 20% temporal problems (improper chain sequencing)

• 12% other

AutoGPT (23 instances):

• 52% output format (JSON parsing loops) [45]

• 26% temporal (tool invocation ordering)

• 22% value constraints (context overflow)

Direct API Usage (420 instances):

22

Table 11: Contract Violations by Framework (Data Table)
Framework n Most Common % Example Issue Source

LangChain 89 Output Format 45% JSON parsing failures [36]
AutoGPT 23 Output Format 52% Tool invocation loops [44]
Direct API 420 Value Constraints 40% Token limits [74]
Custom 80 Data Type 38% Message format [85]

From initial

collection (2020-2024, n=612). Extended analysis (2024-2025) added production frameworks: LangGraph (6
instances), CrewAI (5), LlamaIndex (5), Semantic Kernel (6), plus 16 others across agent coordination tools.

• 40% value constraints (token limits, rate limits) [75]

• 30% data type (parameter formats)

• 20% temporal (initialization, authentication) [81]

• 10% output

4.2.4 Violation Impact Analysis

Table 12 categorizes violation consequences:

Immediate Exception 50.2%

Silent Logic Error

35.0%

Performance Degradation

9.1%

Content Filtering

5.7%

Distribution of Violation Impacts
(n=612 total violations)

0 50 100 150 200 250 300 350
Number of Violations

Immediate Exception

Silent Logic Error

Performance Degradation

Content Filtering

307 (50.2%)

214 (35.0%)

56 (9.1%)

35 (5.7%)

Violation Impact by Count

Critical: 35% of violations cause silent failures
that may go unnoticed until causing downstream problems

Figure 6: Impact of Contract Violations

Critical finding: 35% of violations cause silent failures – the application continues running
but produces incorrect results. These are particularly dangerous as they may go unnoticed until
causing downstream problems. This pattern held consistent across both our initial collection (2020-
2024) and extended production framework analysis (2024-2025).

4.2.5 Temporal Evolution

Contract violation patterns evolved with the ecosystem, as shown in Figure 7:
Pre-ChatGPT Era (2020-2022):

• Dominated by basic API usage issues

23

Table 12: Impact of Contract Violations (Data Table)
Impact Type Count % Description Example

Immediate Exception 307 50.2% API returns error code 401 Unauthorized [82]
Silent Logic Error 214 35.0% Wrong behavior, no error Lost context [37]
Performance Degradation 56 9.1% Increased latency/cost Retry loops
Content Filtering 35 5.7% Request blocked Policy violation [39]

Total 612* 100%
*From initial collection (2020-2024). Extended analysis (2024-2025) added 38 instances, bringing total dataset to

650.

Table 13: Evolution of Contract Violations Over Time (Data Table)
Period Total Dominant Issue New Categories

2020-2021 78 Basic API usage (45%) Token limits
2022 156 Format issues (32%) Chain orchestration
2023 289 Policy violations (28%) Function calling
2024 89 Tool integration (35%) Multi-modal contracts

• Few output format problems (limited schema requirements)

• Minimal policy violations (less public attention)

Post-ChatGPT Era (2023-2024):

• Surge in output format violations (agent frameworks) [36]

• Increased policy violations (broader user base) [39]

• New categories: function calling [40], plugin interfaces

4.3 Case Studies of Common Violations

We present detailed case studies of the most common violation patterns:

4.3.1 Case 1: Token Limit Overflow

Scenario: Chat application accumulating conversation history
Contract: Total tokens (prompt + completion) model maximum
Violation Pattern:

1 messages = conversation_history + [new_message]
2 response = openai.ChatCompletion.create(
3 model="gpt -3.5- turbo",
4 messages=messages # Eventually exceeds 4096 tokens
5)
6 # Error: "maximum context length is 4096 tokens"

Real-world Example: Stack Overflow question #75396481 [74] reports this exact error with
1360 prompt tokens + 4000 max_tokens = 5360 total, exceeding the 4097 limit.

Solution: Implement sliding window or summarization:

24

1 def manage_context(messages , max_tokens =3000):
2 while count_tokens(messages) > max_tokens:
3 messages.pop(0) # Remove oldest message
4 return messages

4.3.2 Case 2: Output Format Non-Compliance

Scenario: LangChain agent expecting JSON for tool selection
Contract: Model output must match JSON schema
Violation Pattern:

1 # Prompt instructs JSON output
2 response = llm("Return␣a␣JSON␣with␣’tool’␣and␣’input’␣keys")
3 # Model returns: "I’ll use the search tool to find information"
4 # Parser fails with: "Could not parse LLM output"

Real-world Example: LangChain issue #22103 [36] shows parser returning empty object
instead of throwing error on invalid JSON.

Solution: Use output validators with retry logic:

1 from langchain.output_parsers import RetryOutputParser
2 parser = RetryOutputParser.from_llm(llm=llm , schema=schema)
3 result = parser.parse_with_prompt(response , prompt)

4.3.3 Case 3: Content Policy False Positive

Scenario: Educational content about historical events
Contract: Content must not violate usage policies
Violation Pattern: “ ‘ User: "Explain the causes of World War II" API: "Content filtered due

to policy violation" “ ‘
Real-world Example: GitHub issue openai/openai-python#331 [39] documents Azure Ope-

nAI content filter triggering on legitimate educational content.
Solution: Rephrase or use moderation pre-check:

1 def safe_query(prompt):
2 moderation = openai.Moderation.create(input=prompt)
3 if moderation["results"][0]["flagged"]:
4 prompt = rephrase_prompt(prompt)
5 return openai.ChatCompletion.create(messages =[...])

4.3.4 Case 4: Rate Limit Violations

Scenario: Batch processing without rate limiting
Contract: Requests must not exceed rate limits
Violation Pattern: Multiple rapid requests trigger 429 errors
Real-world Example: Stack Overflow #75898276 [79] explains distinction between quota

(billing) and rate limits (frequency), with many developers confusing the two.
Solution: Implement exponential backoff:

25

1 import time
2 from tenacity import retry , wait_exponential , stop_after_attempt
3

4 @retry(wait=wait_exponential(min=1, max =60), stop=stop_after_attempt (5))
5 def call_api_with_retry(prompt):
6 try:
7 return openai.ChatCompletion.create (...)
8 except openai.error.RateLimitError as e:
9 print(f"Rate␣limit␣hit:␣{e}")

10 raise

4.3.5 Case 5: RAG Citation and Grounding Violations

Scenario: Retrieval-Augmented Generation (RAG) system for question answering over internal
documents

Contract: Retrieval Contract: Embedding dimensions must match between query and indexed
documents; top-k parameter must be positive integer ≤ index size. Grounding Contract: Generated
responses must cite retrieved sources when making factual claims; system must refuse or acknowledge
uncertainty when retrieval returns empty results.

Violation Pattern: Three common failures: (1) Dimension mismatch when switching embed-
ding models without reindexing (e.g., text-embedding-ada-002 [1536-dim] vs text-embedding-3-small
[512-dim]); (2) Hallucinated citations where LLM fabricates source references not in retrieved doc-
uments; (3) Silent failure when retrieval returns no results but LLM generates confident answers
without disclaimers.

Real-world Example: LangChain GitHub issue #8490 reports users encountering dimension
mismatches after OpenAI’s embedding model updates, causing runtime failures in production RAG
pipelines. Stack Overflow #76234891 documents cases where GPT-4 cited nonexistent "Source [3]"
when only 2 documents were retrieved, undermining system trustworthiness.

Solution: Implement multi-layer contracts combining static validation, retrieval monitoring,
and post-generation verification:

1 from typing import List , Optional
2 import numpy as np
3

4 class RAGContractValidator:
5 def __init__(self , expected_dim: int , index_size: int):
6 self.expected_dim = expected_dim
7 self.index_size = index_size
8

9 # Precondition: Validate retrieval parameters
10 def validate_retrieval(self , query_embedding: np.ndarray , top_k: int):
11 assert query_embedding.shape [0] == self.expected_dim , \
12 f"Embedding␣dimension␣mismatch:␣expected␣{self.expected_dim},␣

got␣{query_embedding.shape [0]}"
13 assert 0 < top_k <= self.index_size , \
14 f"Invalid␣top_k ={top_k},␣must␣be␣in␣[1,␣{self.index_size }]"
15

16 # Postcondition: Verify grounding and citations
17 def validate_response(self , response: str , retrieved_docs: List[str],
18 allow_empty_retrieval: bool = False) -> bool:
19 if not retrieved_docs:

26

20 if allow_empty_retrieval:
21 # Check for uncertainty acknowledgment
22 uncertainty_phrases = ["I␣don’t␣have␣information",
23 "No␣relevant␣documents␣found",
24 "I␣cannot␣answer␣based␣on"]
25 return any(phrase.lower() in response.lower()
26 for phrase in uncertainty_phrases)
27 else:
28 raise ValueError("Empty␣retrieval␣with␣allow_empty=False")
29

30 # Check citation integrity: extract [1], [2], etc.
31 import re
32 cited_indices = set(int(m.group (1))
33 for m in re.finditer(r’\[(\d+)\]’, response))
34 valid_indices = set(range(1, len(retrieved_docs) + 1))
35

36 hallucinated = cited_indices - valid_indices
37 if hallucinated:
38 raise ValueError(f"Hallucinated␣citations:␣{hallucinated}")
39

40 return True
41

42 # Usage
43 validator = RAGContractValidator(expected_dim =1536 , index_size =10000)
44 validator.validate_retrieval(query_embedding , top_k =5)
45 docs = retrieve(query_embedding , top_k =5)
46 response = llm.generate(query , context=docs)
47 validator.validate_response(response , docs , allow_empty_retrieval=True)

Formal Connection: In our contract model (Definition 1, §??), RAG contracts extend post-
conditions to distributions over grounded outputs. For retrieval contract Cr, precondition Prer
constrains embedding dimensions and top-k bounds, while for grounding contract Cg, postcondi-
tion Postg requires Pr[cited(x) ⊆ retrieved | x ∼ Doutput] ≥ α, where α is a grounding confidence
threshold (typically 0.95 for high-stakes applications).

Impact: RAG violations are particularly insidious because they often manifest as plausible but
incorrect outputs rather than runtime errors, with hallucinated citations undermining user trust.
Our validator prevents 87% of dimension mismatches at development time and catches 94% of
citation hallucinations in post-hoc validation (evaluation details in §??).

4.3.6 Case 6: Streaming SSE Assembly Violations

Scenario: Real-time chat application using Server-Sent Events (SSE) streaming for incremental
response delivery

Contract: SSE Protocol Contract: When stream=true, API returns SSE event stream with
format data: {JSON}\n\n; final event is data: [DONE]; client must buffer incomplete JSON frag-
ments and handle connection timeouts. Assembly Contract: Delta content must be concatenated in
order; finish_reason field indicates completion; partial tool calls require assembly across multiple
chunks.

Violation Pattern: Three common failures: (1) Premature JSON parsing where developers
attempt to parse each SSE chunk as complete JSON, causing “Expecting value” errors on delta
fragments like {"choices":[]}; (2) Connection timeout handling where clients fail to reconnect on

27

network interruptions, losing partial responses; (3) Tool call fragmentation where function arguments
arrive across multiple chunks but are processed prematurely.

Real-world Example: GitHub issue openai/openai-python#742 reports developers encoun-
tering JSON decode errors when parsing streaming chunks, not realizing that delta fields contain
fragments. Stack Overflow #78234123 documents cases where tool calls with large argument pay-
loads arrive fragmented, causing incomplete function invocations.

Solution: Implement stateful stream assembler with proper buffering:

1 import json
2 from typing import Optional , Iterator
3 import openai
4

5 class StreamAssembler:
6 def __init__(self):
7 self.content_buffer = ""
8 self.tool_calls = {} # Indexed by tool call ID
9 self.finished = False

10

11 def process_chunk(self , chunk: dict) -> Optional[str]:
12 """Process␣SSE␣chunk ,␣return␣assembled␣content␣when␣ready"""
13 if chunk.get("choices") and len(chunk["choices"]) > 0:
14 delta = chunk["choices"][0]. get("delta", {})
15

16 # Accumulate content
17 if "content" in delta and delta["content"]:
18 self.content_buffer += delta["content"]
19

20 # Assemble tool calls
21 if "tool_calls" in delta:
22 for tc in delta["tool_calls"]:
23 idx = tc["index"]
24 if idx not in self.tool_calls:
25 self.tool_calls[idx] = {
26 "id": tc.get("id", ""),
27 "function": {"name": "", "arguments": ""}
28 }
29

30 if "function" in tc:
31 if "name" in tc["function"]:
32 self.tool_calls[idx]["function"]["name"] += tc

["function"]["name"]
33 if "arguments" in tc["function"]:
34 self.tool_calls[idx]["function"]["arguments"]

+= tc["function"]["arguments"]
35

36 # Check completion
37 finish_reason = chunk["choices"][0]. get("finish_reason")
38 if finish_reason in ["stop", "tool_calls", "length"]:
39 self.finished = True
40 return self.get_final_response ()
41

42 return None # Not yet complete
43

44 def get_final_response(self) -> dict:

28

45 """Return␣fully␣assembled␣response"""
46 # Validate tool call JSON
47 for idx , tc in self.tool_calls.items ():
48 try:
49 json.loads(tc["function"]["arguments"])
50 except json.JSONDecodeError:
51 raise ValueError(f"Incomplete␣tool␣call␣arguments␣for␣

index␣{idx}")
52

53 return {
54 "content": self.content_buffer ,
55 "tool_calls": list(self.tool_calls.values ()),
56 "finished": self.finished
57 }
58

59 # Usage with timeout handling
60 def stream_with_retry(prompt: str , timeout: int = 30) -> str:
61 assembler = StreamAssembler ()
62

63 try:
64 stream = openai.ChatCompletion.create(
65 model="gpt -4-turbo",
66 messages =[{"role": "user", "content": prompt}],
67 stream=True ,
68 timeout=timeout
69)
70

71 for chunk in stream:
72 result = assembler.process_chunk(chunk)
73 if result and assembler.finished:
74 return result["content"]
75

76 except (TimeoutError , ConnectionError) as e:
77 # Save partial state and retry
78 partial = assembler.get_final_response ()
79 print(f"Connection␣interrupted.␣Partial␣content:␣{partial[’content

’][:100]}...")
80 # Implement exponential backoff retry logic here
81 raise
82

83 return assembler.content_buffer

Formal Connection: In our contract model (§??), streaming contracts introduce temporal
postconditions over sequences. For SSE contract Csse, the postcondition Postsse requires ∀i <
n.concat(delta1, . . . , deltai) = prefix(outputfinal), ensuring monotonic content growth. The [DONE]
terminator serves as an explicit contract fulfillment signal.

Impact: Streaming violations cause production incidents in real-time applications, with incom-
plete responses displayed to users or tool calls executed with partial arguments. Our assembler
pattern prevents 96% of JSON parsing errors and enables graceful degradation on network inter-
ruptions, maintaining user experience quality.

29

4.4 Synthesis: Compositional Contract Failures in Production Systems

Our analysis of 650 contract violations spanning 2020-2025 reveals a critical pattern as LLM sys-
tems matured from experimental prototypes to production-scale autonomous agents: composition
creates contract violations. Features working independently fail when combined—streaming +
validation [49], structured output + function calling [51], async components + sync methods [59],
multimodal inputs + string assumptions [53]. This compositional brittleness, largely absent from
simpler prototype systems (2020-2023), dominates production agent frameworks (2024-2025) where
multiple advanced features must interact.

Silent degradations represent the most dangerous failure mode: streaming silently falling
back to batch mode [48], caching silently not working [61], validation silently returning wrong
types [52], async operations silently hanging without error messages [59]. These violations don’t
throw exceptions—they cause incorrect behavior discovered only through careful monitoring or
production incidents, undermining the reliability assumptions developers make when composing
LLM capabilities.

Provider abstraction layers simultaneously hide and expose incompatibilities. Strongly-typed
languages (C#, TypeScript) surface type system violations [69, 70] invisible in dynamic Python
contexts. Version coupling creates complex compatibility matrices where model version, API ver-
sion, and SDK version must align across multiple dimensions [64, 65, 63]. Embedding systems lack
standardization, causing dimension mismatches [58], length measurement confusion [57], and input
type ambiguities [56] that break RAG pipelines.

Inter-agent coordination in hierarchical systems introduces new contract categories for data se-
rialization [66], schema evolution [67], and output format duality [68]. Multimodal content creates
token explosion when frameworks embed base64 image data in conversation history instead of using
URL references with caching [55], violating cost assumptions. Error semantic interpretation requires
context-dependent handling where identical HTTP status codes signal fundamentally different fail-
ure modes [72].

Implications for Future Systems: Reliable LLM applications require (1) compositional
contract testing frameworks validating feature combinations beyond individual endpoints, (2) provider
capability negotiation protocols querying model capabilities dynamically rather than hardcod-
ing whitelists [73], (3) semantic versioning for model capabilities distinguishing parameter
syntax changes from feature availability, and (4) explicit failure modes where silent degradations
become loud errors enabling debugging. Our expanded taxonomy, validated across 650 instances
from prototype to production systems, provides the foundation for building these next-generation
contract-aware LLM frameworks.

4.5 Comparison with Traditional ML API Contracts

Our analysis reveals both similarities and distinctions between LLM and traditional ML API con-
tracts:

Similarities:

• Input validation remains the dominant challenge (>60% of issues)

• Type mismatches cause immediate, easily diagnosed failures

• Documentation gaps lead to trial-and-error debugging

Distinctions:

• Output uncertainty: LLMs’ probabilistic nature makes output contracts harder to enforce

30

• Content policies: Ethical constraints add a new dimension absent from numerical ML

• Natural language interfaces: Prompt engineering creates implicit contracts beyond code

• Token economics: Usage costs create soft constraints influencing design decisions

Implications: While traditional contract enforcement techniques (type checking, value val-
idation) remain relevant, LLM APIs require additional strategies for output validation, content
filtering, and prompt engineering.

5 Discussion: Contract Enforcement Strategies

Based on our taxonomy and empirical findings, we present practical techniques for detecting and
preventing contract violations in LLM applications.

5.1 Static Analysis for Contract Verification

Static analysis can catch many violations before runtime, particularly input-related contracts. Ta-
ble 14 summarizes our approach:

Table 14: Static Analysis Techniques for LLM API Contracts
Technique Contracts Addressed Implementation Effectiveness

Type Checking Data type violations Pydantic, Type-
Script

88.6% caught

Token Counting Context length limits tiktoken library 91.2% prevented
Schema Valida-
tion

Message format JSON Schema 94.3% detected

Prompt Analysis Format instructions Regex patterns 81.8% identified

5.1.1 Type Checking Extensions

Modern type systems can encode many LLM API contracts. We developed type-safe wrappers using
Pydantic [23]:

1 from typing import List , Dict , Literal , TypedDict
2 from pydantic import BaseModel , validator
3

4 class Message(TypedDict):
5 role: Literal["system", "user", "assistant"]
6 content: str
7

8 class ChatRequest(BaseModel):
9 model: str

10 messages: List[Message]
11 temperature: float = 0.7
12 max_tokens: int = 150
13

14 @validator(’temperature ’)
15 def temperature_range(cls , v):

31

16 if not 0 <= v <= 2:
17 raise ValueError(’Temperature␣must␣be␣between␣0␣and␣2’)
18 return v
19

20 @validator(’messages ’)
21 def messages_not_empty(cls , v):
22 if not v:
23 raise ValueError(’Messages␣cannot␣be␣empty’)
24 return v
25

26 @validator(’max_tokens ’)
27 def token_limit(cls , v, values):
28 model = values.get(’model’)
29 limits = {’gpt -3.5- turbo ’: 4096, ’gpt -4’: 8192}
30 if model in limits and v > limits[model]:
31 raise ValueError(f’Max␣tokens␣exceeds␣{model}␣limit ’)
32 return v

Listing 3: Type-safe LLM API wrapper

This approach caught 88.6% of type-related violations in our test set.

5.1.2 Prompt Analysis Tools

We developed a static analyzer for prompt templates that checks for common contract violations:
1 def analyze_prompt(template: str , model: str) -> List[Warning]:
2 warnings = []
3

4 # Check token count
5 estimated_tokens = count_tokens(template , model)
6 if estimated_tokens > MODEL_LIMITS[model] * 0.5:
7 warnings.append(f"Prompt␣uses␣ >50%␣of␣{model}␣context")
8

9 # Check for format instructions
10 if "json" in template.lower () and "‘‘‘" not in template:
11 warnings.append("JSON␣request␣without␣format␣example")
12

13 # Check for problematic patterns
14 if "{{" in template and "}}" in template:
15 placeholders = extract_placeholders(template)
16 for p in placeholders:
17 if p.upper () == p: # All caps placeholder
18 warnings.append(f"Placeholder␣{p}␣might␣inject␣unsafe␣

content")
19

20 return warnings

Listing 4: Static prompt analyzer

Applied to our dataset, this tool identified 81.8% of prompt-related issues before execution.

5.2 Runtime Guardrails

Runtime validation catches violations that escape static analysis, particularly output-related con-
tracts. Table 15 shows our implementation:

32

Table 15: Runtime Guardrail Effectiveness
Guardrail Type Violations Prevented Coverage Overhead

Output Validation 28/30 93.3% 10-50ms
Content Filtering 9/10 90.0% 100-200ms
Retry Logic 45/48 93.8% Variable
State Management 12/14 85.7% 5-20ms

5.2.1 Output Format Validation

We implemented a comprehensive output validation framework inspired by Guardrails AI [20]:

1 class OutputValidator:
2 def __init__(self , schema , max_retries =3):
3 self.schema = schema
4 self.max_retries = max_retries
5

6 def validate_with_retry(self , llm_func , prompt , ** kwargs):
7 last_error = None
8

9 for attempt in range(self.max_retries):
10 try:
11 response = llm_func(prompt , ** kwargs)
12 parsed = self.parse_response(response)
13 self.validate_schema(parsed)
14 return parsed
15 except (ParseError , ValidationError) as e:
16 last_error = e
17 # Augment prompt with error feedback
18 prompt = self.create_retry_prompt(
19 original_prompt=prompt ,
20 response=response ,
21 error=str(e),
22 attempt=attempt
23)
24 # Increase temperature slightly to vary response
25 kwargs[’temperature ’] = min(1.5,
26 kwargs.get(’temperature ’, 0.7) + 0.1)
27

28 raise MaxRetriesExceeded(f"Failed␣after␣{self.max_retries}␣
attempts:␣{last_error}")

29

30 def create_retry_prompt(self , original_prompt , response , error ,
attempt):

31 return f"""
32 {original_prompt}
33

34 Previous␣attempt␣#{ attempt␣+␣1}␣failed␣with␣error:␣{error}
35 Invalid␣response␣was:␣{response}
36

37 Please␣provide␣a␣valid␣response␣following␣the␣schema:
38 {json.dumps(self.schema ,␣indent =2)}
39 """

33

Listing 5: Output validation with retry logic

This approach successfully handled 93.3% of output format violations in our test scenarios.

5.2.2 Content Filtering Pipeline

Proactive content filtering prevents policy violations:

1 class ContentFilter:
2 def __init__(self , sensitivity="medium"):
3 self.sensitivity = sensitivity
4 self.patterns = load_filter_patterns(sensitivity)
5

6 def filter_pipeline(self , content):
7 # Stage 1: Quick pattern matching
8 if self.has_obvious_violations(content):
9 return FilterResult(blocked=True , reason="Pattern␣match")

10

11 # Stage 2: API -based moderation
12 moderation = openai.Moderation.create(input=content)
13 if moderation["results"][0]["flagged"]:
14 categories = moderation["results"][0]["categories"]
15 flagged = [k for k, v in categories.items () if v]
16 return FilterResult(blocked=True , reason=f"API␣flags:␣{flagged

}")
17

18 # Stage 3: Context -aware filtering
19 if self.sensitivity == "high":
20 context_check = self.check_context_safety(content)
21 if not context_check.safe:
22 return FilterResult(blocked=True , reason=context_check.

reason)
23

24 return FilterResult(blocked=False)

Listing 6: Multi-stage content filter

Applied to content policy violations in our dataset, this pipeline prevented 90% of violations
with 100-200ms overhead.

5.3 Framework Integration

We demonstrate contract enforcement integration with popular frameworks:

5.3.1 LangChain Integration

Custom chain with built-in contract checking:

1 from langchain.chains import LLMChain
2 from langchain.callbacks import BaseCallbackHandler
3

4 class ContractCallback(BaseCallbackHandler):
5 def __init__(self , contracts):
6 self.contracts = contracts

34

7 self.violations = []
8

9 def on_llm_start(self , serialized , prompts , ** kwargs):
10 # Check input contracts
11 for prompt in prompts:
12 for contract in self.contracts[’input’]:
13 if not contract.check(prompt):
14 self.violations.append(
15 f"Input␣violation:␣{contract.description}"
16)
17 if contract.severity == "critical":
18 raise ContractViolation(contract)
19

20 def on_llm_end(self , response , ** kwargs):
21 # Check output contracts
22 for output in response.generations:
23 for contract in self.contracts[’output ’]:
24 if not contract.check(output.text):
25 self.violations.append(
26 f"Output␣violation:␣{contract.description}"
27)
28 # Attempt repair if possible
29 if contract.repairable:
30 output.text = contract.repair(output.text)
31

32 class ContractLLMChain(LLMChain):
33 def __init__(self , llm , prompt , contracts=None):
34 super ().__init__(llm=llm , prompt=prompt)
35 if contracts:
36 self.callbacks = [ContractCallback(contracts)]
37

38 def run(self , *args , ** kwargs):
39 # Pre -execution contract checks
40 self.check_preconditions(args , kwargs)
41

42 # Execute with monitoring
43 result = super().run(*args , ** kwargs)
44

45 # Post -execution validation
46 self.validate_postconditions(result)
47

48 return result

Listing 7: Contract-aware LangChain

5.3.2 Agent Framework Enhancements

Protecting agent loops from format-related infinite loops, addressing issues documented in Auto-
GPT [44]:

1 class ProtectedAgent:
2 def __init__(self , base_agent , max_errors =3):
3 self.base_agent = base_agent
4 self.max_errors = max_errors

35

5 self.error_history = []
6

7 def run(self , objective):
8 consecutive_errors = 0
9 last_action = None

10

11 while not self.base_agent.is_complete ():
12 try:
13 action = self.base_agent.next_action ()
14

15 # Check for repetition
16 if action == last_action:
17 raise RepetitionError("Agent␣repeating␣same␣action")
18

19 # Validate action format
20 if not self.is_valid_action(action):
21 raise InvalidActionError(f"Invalid␣action␣format:␣{

action}")
22

23 # Execute action
24 result = self.base_agent.execute(action)
25

26 # Reset error counter on success
27 consecutive_errors = 0
28 last_action = action
29

30 except (RepetitionError , InvalidActionError , ParseError) as e:
31 consecutive_errors += 1
32 self.error_history.append ({
33 ’error ’: str(e),
34 ’action ’: action ,
35 ’timestamp ’: time.time()
36 })
37

38 if consecutive_errors >= self.max_errors:
39 # Fallback to safer model or abort
40 return self.safe_fallback(objective , self.

error_history)
41

42 # Attempt recovery
43 self.base_agent.inject_error_context(e)
44

45 return self.base_agent.get_result ()

Listing 8: Protected agent execution

5.4 Evaluation of Enforcement Techniques

We evaluated our enforcement strategies on a test set of 100 real-world scenarios:

5.4.1 Methodology

• Selected 100 contract violation cases from our dataset

36

• Implemented minimal applications reproducing each violation

• Applied enforcement techniques incrementally

• Measured prevention rate and performance overhead

5.4.2 Results

Table 16 shows the effectiveness of different enforcement strategies:

Table 16: Effectiveness of Contract Enforcement Techniques
Technique Violations Prevented Coverage Overhead

Static Type Checking 31/35 88.6% <1ms
Prompt Analysis 18/22 81.8% 2-5ms
Runtime Validation 28/30 93.3% 10-50ms
Content Filtering 9/10 90.0% 100-200ms
Framework Integration 3/3 100% 5-20ms

Combined 89/100 89.0% <300ms

Key findings:

• 89% of violations prevented with comprehensive enforcement

• Static techniques are highly effective for input contracts with negligible overhead

• Runtime validation essential for output contracts but adds latency

• Content filtering is computationally expensive but critical for production

5.4.3 Failure Analysis

The 11 unpreventable violations fell into three categories:

1. Model Non-determinism (5 cases): Model occasionally ignores format instructions despite
correct prompting

2. Ambiguous Policies (4 cases): Content filters triggered by edge cases difficult to predict

3. Provider-Side Issues (2 cases): Temporary service disruptions, rate limit race conditions

These represent fundamental limitations requiring human intervention or architectural changes
(e.g., fallback models).

5.5 Best Practices for Contract-Aware Development

Based on our analysis and enforcement experience, we recommend:

37

5.5.1 Development Practices

1. Contract-First Design: Document expected contracts before implementation

2. Progressive Enhancement: Start with strict validation, relax cautiously

3. Defensive Prompting: Include format examples and error cases in prompts

4. Graceful Degradation: Implement fallbacks for contract violations

5.5.2 Testing Strategies

1. Contract Test Suites: Systematically test boundary conditions

2. Chaos Engineering: Deliberately violate contracts to verify handling

3. Model Migration Tests: Verify contract compatibility across model versions

4. Load Testing: Ensure rate limit and token limit handling under stress

5.5.3 Monitoring and Observability

1. Contract Metrics: Track violation rates by category

2. Alerting Thresholds: Notify on unusual violation patterns

3. Cost Attribution: Monitor token usage against contracts

4. User Impact Analysis: Correlate violations with user experience metrics

6 Implications for Stakeholders

Our findings have significant implications for different stakeholders in the LLM ecosystem.

6.1 For Developers

6.1.1 Immediate Actions

Developers can improve reliability by implementing the contract enforcement strategies detailed in
Table 17:

Table 17: Recommended Actions for Developers
Action Implementation Expected Benefit

Input Validation Pydantic models, type hints 88% fewer type errors
Retry Logic Exponential backoff, tenacity Handle transient failures
Output Validation Guardrails AI, custom parsers 93% format compliance
Context Manage-
ment

Sliding window, summariza-
tion

Prevent token overflows

Version Testing Test across model versions Identify version-specific
contracts

38

6.1.2 Architectural Considerations

Contract awareness should influence system design:

• Build abstraction layers that encapsulate contract enforcement

• Design for graceful degradation when contracts cannot be met

• Implement circuit breakers for repeated contract violations

• Use caching to reduce API calls and contract violation opportunities

6.2 For API Providers

6.2.1 Documentation Improvements

Providers should enhance documentation as shown in Table 18:

Table 18: Recommendations for API Providers
Improvement Current State Recommended En-

hancement

Contract Specifica-
tion

Natural language docs Machine-readable schemas

Error Messages Generic errors Detailed violation context
Validation Tools None/limited Interactive contract valida-

tors
Version Documenta-
tion

Changelog only Contract compatibility ma-
trix

6.2.2 API Design Enhancements

Technical improvements to consider:

• Expose contract checking endpoints for pre-flight validation

• Implement progressive error handling (warnings before hard failures)

• Provide contract negotiation mechanisms for flexible requirements

• Support contract discovery through introspection APIs

6.3 For Researchers

6.3.1 Open Research Questions

Our work identifies several research opportunities:

• Formal Verification: Can we prove LLM applications satisfy contracts?

• Contract Inference: Can we automatically derive contracts from API behavior?

• Probabilistic Contracts: How do we handle non-deterministic contract satisfaction?

• Contract Evolution: How should contracts adapt as models improve?

39

6.3.2 Tool Development Opportunities

Areas needing better tooling:

• Static analyzers aware of LLM-specific contracts

• Testing frameworks for contract compliance

• Runtime monitors with minimal performance impact

• Contract visualization and debugging tools

6.4 For the Broader Community

6.4.1 Standardization Needs

The community would benefit from:

• Common contract specification languages across providers

• Shared test suites for contract compliance

• Industry-wide best practices for contract handling

• Certification programs for contract-aware applications

6.4.2 Educational Initiatives

Training materials should cover:

• Contract-aware prompt engineering

• Defensive programming for AI systems

• Testing strategies for non-deterministic outputs

• Cost-effective contract enforcement patterns

7 Future Work

While our study provides comprehensive coverage of current LLM API contracts, several directions
merit further investigation.

7.1 Dynamic Contract Learning

Future systems could learn contracts through interaction:

• Mining contracts from successful/failed API calls

• Adapting contracts based on model behavior changes

• Personalizing contracts for specific use cases

• Predicting contract violations before they occur

40

7.2 ContractBench-LLM: A Benchmark for Reproducible Research

To facilitate systematic comparison and reproducible research, we plan to release ContractBench-
LLM, a comprehensive benchmark derived from our empirical study. This benchmark would pack-
age our 650 validated contract violation instances into a structured dataset with three core evaluation
tasks:

Proposed Tasks:

1. Contract Mining: Extract contracts from developer discussions and documentation (met-
rics: Precision, Recall, Category F1)

2. Violation Detection: Classify code snippets as violating or satisfying given contracts (met-
rics: Detection F1, False Negative Rate)

3. Enforcement Efficacy: Measure post-enforcement CSR, SFR, and latency overhead across
techniques

Dataset Schema: Each instance would include source metadata (platform, provider, frame-
work), contract specification (precondition/postcondition), code snippet, violation signature (error
message, failure mode), and ground truth annotations with inter-rater reliability metrics. The
dataset would be released in JSONL format with comprehensive documentation, baseline imple-
mentations, and evaluation scripts.

Impact: Such a benchmark would enable systematic comparison of contract-aware development
techniques, establish standardized metrics for the community, and facilitate reproducible research in
LLM API reliability. The baseline results from our enforcement techniques (CSR=89%, SFR=11%,
overhead=27ms) would provide initial reference points for future work.

7.3 Formal Methods for LLM Systems

Applying formal verification to LLM applications, building on work in neural network verifica-
tion [18, 19]:

• Developing specification languages for probabilistic contracts

• Model checking for conversation state machines

• Proving safety properties despite non-determinism

• Synthesizing contract-compliant prompts automatically

7.4 Cross-Modal Contract Frameworks

Extending contracts to multimodal systems:

• Vision-language model contracts

• Audio processing pipeline contracts

• Multi-model orchestration contracts

• Embodied AI system contracts

41

7.5 Economic and Social Dimensions

Investigating broader implications:

• Cost models for contract enforcement

• Privacy-preserving contract validation

• Fairness constraints as contracts

• Legal liability for contract violations

8 Conclusion

This paper presents the first comprehensive, longitudinal study of contracts in Large Language
Model APIs, revealing a complex landscape of requirements that developers must navigate for
reliable system integration. Through analysis of 650 real-world contract violations across major
providers and frameworks spanning 2020-2025, we developed a taxonomy that extends traditional
API contract categories with LLM-specific classifications including output format requirements,
content policy constraints, streaming response assembly, multimodal content handling, and inter-
agent coordination—validated from experimental prototypes through production autonomous agent
systems.

Our empirical findings demonstrate that while basic input validation issues dominate (60%
of violations), LLM-specific contracts account for a significant portion (20%) of failures. These
novel contract types, particularly around output format compliance and content filtering, represent
unprecedented challenges in API integration. The prevalence of silent failures (35% of violations)
underscores the critical need for comprehensive contract enforcement beyond simple error handling.

We demonstrated practical enforcement techniques achieving 89% violation prevention through
a combination of static analysis, runtime validation, and framework integration. These techniques,
while adding minimal overhead (<300ms in worst cases), dramatically improve application reliabil-
ity. However, the remaining 11% of unpreventable violations highlight fundamental challenges in
LLM systems: model non-determinism, ambiguous policies, and distributed system complexities.

The implications extend beyond technical solutions. For developers, contract awareness should
drive architectural decisions and testing strategies. API providers must recognize that clear contract
specification is as important as model capabilities. Researchers have opportunities to formalize
probabilistic contracts and develop verification techniques for non-deterministic systems.

As LLMs transition from experimental tools to critical infrastructure, the importance of ex-
plicit, enforceable contracts cannot be overstated. Just as the software industry learned to manage
complexity through interfaces and specifications, the AI community must embrace contracts as first-
class citizens in LLM system design. This shift from implicit assumptions to explicit contracts is
essential for building trustworthy, maintainable, and scalable AI applications.

Our work provides a foundation for this transition, offering both theoretical understanding and
practical tools. By making LLM API contracts visible and manageable, we enable developers to
harness the power of large language models with confidence, knowing that their applications will
behave predictably even as models and APIs evolve.

The future of AI-augmented software depends not just on model capabilities but on our abil-
ity to reliably integrate these capabilities into complex systems. Contracts provide the conceptual
framework and practical mechanisms for achieving this integration. As the field advances, we envi-
sion development environments where contracts are automatically inferred, continuously validated,

42

and seamlessly enforced, making reliable LLM integration as straightforward as calling a traditional
API.

Acknowledgments

We thank the developer communities of OpenAI, LangChain, and other platforms for openly sharing
their experiences and solutions. We acknowledge the anonymous reviewers whose feedback strength-
ened this work. This research was partially supported by [funding acknowledgments]. Special thanks
to the practitioners who validated our taxonomy and provided real-world insights.

References

[1] Khairunnesa, S. S., Ahmed, S., Imtiaz, S. M., Rajan, H., & Leavens, G. T. (2023). What
kinds of contracts do ML APIs need? Empirical Software Engineering, 28(6), Article 142. DOI:
10.1007/s10664-023-10320-z. ArXiv: https://arxiv.org/abs/2307.14465

[2] Meyer, B. (1992). Applying “design by contract”. Computer, 25(10), 40-51. DOI:
10.1109/2.161279

[3] Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.). Prentice Hall. ISBN: 978-
0-13-629155-8

[4] Meyer, B. (1991). Design by Contract. In D. Mandrioli & B. Meyer (Eds.), Advances in Object-
Oriented Software Engineering (pp. 1-50). Prentice Hall.

[5] Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., & Paradkar, A. (2012). Inferring method
specifications from natural language API descriptions. Proceedings of ICSE 2012, 815-825. DOI:
10.1109/ICSE.2012.6227137

[6] Zhang, T., Gao, C., Ma, L., Lyu, M., & Kim, M. (2019). An empirical study of common
challenges in developing deep learning applications. Proceedings of ISSRE 2019, 104-115. DOI:
10.1109/ISSRE.2019.00020

[7] Zhong, H., Zhang, L., Xie, T., & Mei, H. (2009). Inferring resource specifications from natural
language API documentation. Proceedings of ASE 2009, 307-318. DOI: 10.1109/ASE.2009.62

[8] Zhong, H., Xie, T., Zhang, L., Pei, J., & Mei, H. (2009). MAPO: Mining and recommending
API usage patterns. Proceedings of ECOOP 2009, LNCS 5653, 318-343. DOI: 10.1007/978-3-
642-03013-0_15

[9] Tan, L., Yuan, D., Krishna, G., & Zhou, Y. (2012). @tComment: Testing Javadoc com-
ments to detect comment-code inconsistencies. Proceedings of ICST 2012, 260-269. DOI:
10.1109/ICST.2012.106

[10] Zhou, Y., Gu, R., Chen, T., Huang, Z., Panichella, S., & Gall, H. (2017). Analyzing APIs
documentation and code to detect directive defects. Proceedings of ICSE 2017, 27-38. DOI:
10.1109/ICSE.2017.11

[11] Uddin, G., & Khomh, F. (2019). Automatic mining of opinions expressed about APIs
in Stack Overflow. IEEE Transactions on Software Engineering, 47(3), 522-559. DOI:
10.1109/TSE.2019.2900245

43

https://arxiv.org/abs/2307.14465

[12] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., & Xiao,
C. (2007). The Daikon system for dynamic detection of likely invariants. Science of Computer
Programming, 69(1-3), 35-45. DOI: 10.1016/j.scico.2007.01.015

[13] Ernst, M. D., Cockrell, J., Griswold, W. G., & Notkin, D. (2001). Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software Engineering,
27(2), 99-123. DOI: 10.1109/32.908957

[14] Pradel, M., & Gross, T. R. (2011). Detecting anomalies in the order of equally-typed method
arguments. Proceedings of ISSTA 2011, 232-242. DOI: 10.1145/2001420.2001448

[15] Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi, J. M., & Nguyen, T. N. (2009). Graph-
based mining of multiple object usage patterns. Proceedings of ESEC/FSE 2009, 383-392. DOI:
10.1145/1595696.1595767

[16] Gu, X., Zhang, H., Zhang, D., & Kim, S. (2016). Deep API Learning. Proceedings of FSE 2016,
631-642. DOI: 10.1145/2950290.2950334. ArXiv: https://arxiv.org/abs/1605.08535

[17] Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., & Trippel, C. (2023). nl2spec: Interactively
translating unstructured natural language to temporal logics with large language models. Pro-
ceedings of CAV 2023, LNCS 13964, 383-396. DOI: 10.1007/978-3-031-37703-7_18. GitHub:
https://github.com/realChrisHahn2/nl2spec

[18] Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex:
An efficient SMT solver for verifying deep neural networks. Proceedings of CAV 2017. DOI:
10.1007/978-3-319-63387-9_5. ArXiv: https://arxiv.org/abs/1702.01135

[19] Tran, H.-D., Yang, X., Lopez, D. M., Musau, P., Nguyen, L. V., Xiang, W., Bak, S., &
Johnson, T. T. (2020). NNV: The neural network verification tool. Proceedings of CAV 2020.
DOI: 10.1007/978-3-030-53288-8_1. ArXiv: https://arxiv.org/abs/2004.05519

[20] Guardrails AI. (2023). Guardrails: Adding guardrails to large language models.
GitHub: https://github.com/guardrails-ai/guardrails. Documentation: https://www.
guardrailsai.com/docs

[21] Microsoft. (2023). Guidance: A guidance language for controlling large language models.
GitHub: https://github.com/guidance-ai/guidance

[22] Chase, H. (2022). LangChain. GitHub: https://github.com/langchain-ai/langchain. Doc-
umentation: https://python.langchain.com/

[23] Pydantic. (2023). Pydantic: Data validation using Python type hints. GitHub: https:
//github.com/pydantic/pydantic. Documentation: https://docs.pydantic.dev/

[24] Promptfoo. (2023). Promptfoo: Test your prompts, agents, and RAGs. GitHub: https://
github.com/promptfoo/promptfoo. Documentation: https://www.promptfoo.dev/docs/

[25] PromptLayer. (2023). PromptLayer: Maintain a log of your prompts and OpenAI API requests.
GitHub: https://github.com/MagnivOrg/prompt-layer-library. Documentation: https:
//docs.promptlayer.com/

[26] OpenAI. (2023). OpenAI API Documentation. https://platform.openai.com/docs/

44

https://arxiv.org/abs/1605.08535
https://github.com/realChrisHahn2/nl2spec
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/2004.05519
https://github.com/guardrails-ai/guardrails
https://www.guardrailsai.com/docs
https://www.guardrailsai.com/docs
https://github.com/guidance-ai/guidance
https://github.com/langchain-ai/langchain
https://python.langchain.com/
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://docs.pydantic.dev/
https://github.com/promptfoo/promptfoo
https://github.com/promptfoo/promptfoo
https://www.promptfoo.dev/docs/
https://github.com/MagnivOrg/prompt-layer-library
https://docs.promptlayer.com/
https://docs.promptlayer.com/
https://platform.openai.com/docs/

[27] OpenAI. (2023). Rate Limits Guide. https://platform.openai.com/docs/guides/
rate-limits

[28] OpenAI. (2023). Moderation API Guide. https://platform.openai.com/docs/guides/
moderation

[29] OpenAI. (2023). OpenAI Developer Forum. https://community.openai.com

[30] Anthropic. (2023). Claude API Documentation. https://docs.anthropic.com/en/api/
overview

[31] Google. (2023). Gemini API Documentation. https://ai.google.dev/gemini-api/docs

[32] Microsoft. (2023). Azure OpenAI Service Documentation. https://learn.microsoft.com/
en-us/azure/ai-foundry/openai/

[33] Meta. (2023). Llama API Documentation. https://llama.developer.meta.com/docs/
overview/

[34] LangChain. (2023). Issue #11405: Prevent agent from exceeding token limit. https://github.
com/langchain-ai/langchain/issues/11405

[35] LangChain. (2023). Issue #12264: Token limitation due to model’s maximum context length.
https://github.com/langchain-ai/langchain/issues/12264

[36] LangChain. (2024). Discussion #22103: JSON parser not working correctly. https://github.
com/langchain-ai/langchain/discussions/22103

[37] LangChain. (2023). Issue #10316: Final answer streaming problem. https://github.com/
langchain-ai/langchain/issues/10316

[38] LangChain. (2024). Discussion #18279: Agent can’t stop on function calls. https://github.
com/langchain-ai/langchain/discussions/18279

[39] OpenAI Python. (2023). Issue #331: Error when trigger Azure OpenAI’s content management
policy. https://github.com/openai/openai-python/issues/331

[40] OpenAI Python. (2023). Issue #703: Function calling example doesn’t work. https://github.
com/openai/openai-python/issues/703

[41] OpenAI Python. (2024). Issue #1795: tool_calls cannot be used when functions present.
https://github.com/openai/openai-python/issues/1795

[42] OpenAI Python. (2024). Issue #926: Function Calling with AzureOpenAI. https://github.
com/openai/openai-python/issues/926

[43] AutoGPT. (2023). Issue #1422: OpenAI AuthenticationError. https://github.com/
Significant-Gravitas/AutoGPT/issues/1422

[44] AutoGPT. (2023). Issue #1994: Gets stuck in a loop. https://github.com/
Significant-Gravitas/AutoGPT/issues/1994

[45] AutoGPT. (2023). Issue #2957: Stuck in loop - Unknown command. https://github.com/
Significant-Gravitas/AutoGPT/issues/2957

45

https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/moderation
https://platform.openai.com/docs/guides/moderation
https://community.openai.com
https://docs.anthropic.com/en/api/overview
https://docs.anthropic.com/en/api/overview
https://ai.google.dev/gemini-api/docs
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/
https://llama.developer.meta.com/docs/overview/
https://llama.developer.meta.com/docs/overview/
https://github.com/langchain-ai/langchain/issues/11405
https://github.com/langchain-ai/langchain/issues/11405
https://github.com/langchain-ai/langchain/issues/12264
https://github.com/langchain-ai/langchain/discussions/22103
https://github.com/langchain-ai/langchain/discussions/22103
https://github.com/langchain-ai/langchain/issues/10316
https://github.com/langchain-ai/langchain/issues/10316
https://github.com/langchain-ai/langchain/discussions/18279
https://github.com/langchain-ai/langchain/discussions/18279
https://github.com/openai/openai-python/issues/331
https://github.com/openai/openai-python/issues/703
https://github.com/openai/openai-python/issues/703
https://github.com/openai/openai-python/issues/1795
https://github.com/openai/openai-python/issues/926
https://github.com/openai/openai-python/issues/926
https://github.com/Significant-Gravitas/AutoGPT/issues/1422
https://github.com/Significant-Gravitas/AutoGPT/issues/1422
https://github.com/Significant-Gravitas/AutoGPT/issues/1994
https://github.com/Significant-Gravitas/AutoGPT/issues/1994
https://github.com/Significant-Gravitas/AutoGPT/issues/2957
https://github.com/Significant-Gravitas/AutoGPT/issues/2957

[46] LlamaIndex. (2024). Issue #13278: RateLimitError 429. https://github.com/run-llama/
llama_index/issues/13278

[47] LangChain. (2025). Issue #31699: ChatLiteLLM streaming crashes with AttributeError on
’role’. https://github.com/langchain-ai/langchain/issues/31699

[48] LangGraph. (2025). Issue #1454: Token-by-token streaming silently fails with useRespons-
esApi. https://github.com/langchain-ai/langgraphjs/issues/1454

[49] LlamaIndex. (2024). Issue #9918: OpenAIPydanticProgram stream_list validation error.
https://github.com/run-llama/llama_index/issues/9918

[50] LangChain. (2024). Discussion #26619: with_structured_output intermittent validation fail-
ures. https://github.com/langchain-ai/langchain/discussions/26619

[51] Semantic Kernel. (2024). Issue #9768: ResponseFormat incompatible with ToolCallBehavior
on GPT-4o. https://github.com/microsoft/semantic-kernel/issues/9768

[52] LlamaIndex. (2024). Issue #16604: as_structured_llm returns string instead of raising error.
https://github.com/run-llama/llama_index/issues/16604

[53] DataDog dd-trace-py. (2024). Issue #8149: LangChain assumes message content is string.
https://github.com/DataDog/dd-trace-py/issues/8149

[54] CrewAI. (2025). Issue #2475: Pydantic validation fails on multimodal message content. https:
//github.com/crewAIInc/crewAI/issues/2475

[55] AutoGen. (2024). Issue #2827: Processing 400 images costs $200+ due to base64 embedding.
https://github.com/microsoft/autogen/issues/2827

[56] LlamaIndex. (2024). Issue #11820: CohereEmbedding input_type parameter not propagated.
https://github.com/run-llama/llama_index/issues/11820

[57] LlamaIndex. (2025). Issue #12592: Cohere embedding character vs token limit confusion.
https://github.com/run-llama/llama_index/issues/12592

[58] LlamaIndex. (2024). Issue #11278: Neo4j dimension mismatch when switching embedding
models. https://github.com/run-llama/llama_index/issues/11278

[59] LangGraph. (2024). Issue #1800: Async checkpointer with sync invoke hangs indefinitely.
https://github.com/langchain-ai/langgraph/issues/1800

[60] CrewAI. (2025). Issue #2260: kickoff_for_each batch execution validation errors. https://
github.com/crewAIInc/crewAI/issues/2260

[61] LangChainJS. (2024). Issue #6705: Anthropic prompt caching fails silently for HumanMessage.
https://github.com/langchain-ai/langchainjs/issues/6705

[62] LangChain-AWS. (2025). Issue #326: AWS Bedrock cachePoint format incompatibility. https:
//github.com/langchain-ai/langchain-aws/issues/326

[63] LangChain. (2025). Issue #31560: o1-mini requires max_completion_tokens not max_tokens.
https://github.com/langchain-ai/langchain/issues/31560

46

https://github.com/run-llama/llama_index/issues/13278
https://github.com/run-llama/llama_index/issues/13278
https://github.com/langchain-ai/langchain/issues/31699
https://github.com/langchain-ai/langgraphjs/issues/1454
https://github.com/run-llama/llama_index/issues/9918
https://github.com/langchain-ai/langchain/discussions/26619
https://github.com/microsoft/semantic-kernel/issues/9768
https://github.com/run-llama/llama_index/issues/16604
https://github.com/DataDog/dd-trace-py/issues/8149
https://github.com/crewAIInc/crewAI/issues/2475
https://github.com/crewAIInc/crewAI/issues/2475
https://github.com/microsoft/autogen/issues/2827
https://github.com/run-llama/llama_index/issues/11820
https://github.com/run-llama/llama_index/issues/12592
https://github.com/run-llama/llama_index/issues/11278
https://github.com/langchain-ai/langgraph/issues/1800
https://github.com/crewAIInc/crewAI/issues/2260
https://github.com/crewAIInc/crewAI/issues/2260
https://github.com/langchain-ai/langchainjs/issues/6705
https://github.com/langchain-ai/langchain-aws/issues/326
https://github.com/langchain-ai/langchain-aws/issues/326
https://github.com/langchain-ai/langchain/issues/31560

[64] Semantic Kernel. (2024). Discussion #9459: GPT-4o structured outputs require API version
coupling. https://github.com/microsoft/semantic-kernel/discussions/9459

[65] Semantic Kernel. (2024). Issue #7197: OpenAI SDK v2 migration breaking changes. https:
//github.com/microsoft/semantic-kernel/issues/7197

[66] CrewAI. (2025). Issue #2606: Manager agent delegation fails on structured task objects. https:
//github.com/crewAIInc/crewAI/issues/2606

[67] CrewAI. (2024). Issue #1744: Tool input schema evolution breaks delegation. https://
github.com/crewAIInc/crewAI/issues/1744

[68] CrewAI. (2024). Issue #1258: Output format duality - reasoning text vs structured JSON.
https://github.com/crewAIInc/crewAI/issues/1258

[69] Semantic Kernel. (2025). Issue #10442: OpenAIAssistantAgent rejects Enum parameters.
https://github.com/microsoft/semantic-kernel/issues/10442

[70] Semantic Kernel. (2024). Issue #5796: Gemini connector fails on Enum parameters. https:
//github.com/microsoft/semantic-kernel/issues/5796

[71] Semantic Kernel. (2024). Issue #8472: Non-deterministic function name format failures. https:
//github.com/microsoft/semantic-kernel/issues/8472

[72] AutoGPT. (2024). Issue #7028: 429 status code semantic ambiguity causes infinite retry.
https://github.com/Significant-Gravitas/AutoGPT/issues/7028

[73] CrewAI. (2025). Issue #2729: OpenRouter capability detection fails for supported models.
https://github.com/crewAIInc/crewAI/issues/2729

[74] Stack Overflow. (2023). OpenAI GPT-3 API error: This model’s maximum context length is
4097 tokens. https://stackoverflow.com/questions/75396481/

[75] Stack Overflow. (2023). OpenAI API giving error: 429 Too Many Requests. https://
stackoverflow.com/questions/75041580/

[76] Stack Overflow. (2023). ChatGPT randomly adding extra stuff to output despite asking for
JSON. https://stackoverflow.com/questions/77606776/

[77] Stack Overflow. (2023). Extract JSON from GPT answer according to JSON schema. https:
//stackoverflow.com/questions/76553851/

[78] Stack Overflow. (2024). Azure GPT-4-Turbo JSON mode breaks after 1024 tokens. https:
//stackoverflow.com/questions/77944251/

[79] Stack Overflow. (2023). OpenAI API error 429: You exceeded your current quota. https:
//stackoverflow.com/questions/75898276/

[80] Stack Overflow. (2024). Handling Rate Limits with OpenAI API. https://stackoverflow.
com/questions/78548625/

[81] Stack Overflow. (2023). OpenAI Authentication error: No API key provided. https://
stackoverflow.com/questions/76796341/

47

https://github.com/microsoft/semantic-kernel/discussions/9459
https://github.com/microsoft/semantic-kernel/issues/7197
https://github.com/microsoft/semantic-kernel/issues/7197
https://github.com/crewAIInc/crewAI/issues/2606
https://github.com/crewAIInc/crewAI/issues/2606
https://github.com/crewAIInc/crewAI/issues/1744
https://github.com/crewAIInc/crewAI/issues/1744
https://github.com/crewAIInc/crewAI/issues/1258
https://github.com/microsoft/semantic-kernel/issues/10442
https://github.com/microsoft/semantic-kernel/issues/5796
https://github.com/microsoft/semantic-kernel/issues/5796
https://github.com/microsoft/semantic-kernel/issues/8472
https://github.com/microsoft/semantic-kernel/issues/8472
https://github.com/Significant-Gravitas/AutoGPT/issues/7028
https://github.com/crewAIInc/crewAI/issues/2729
https://stackoverflow.com/questions/75396481/
https://stackoverflow.com/questions/75041580/
https://stackoverflow.com/questions/75041580/
https://stackoverflow.com/questions/77606776/
https://stackoverflow.com/questions/76553851/
https://stackoverflow.com/questions/76553851/
https://stackoverflow.com/questions/77944251/
https://stackoverflow.com/questions/77944251/
https://stackoverflow.com/questions/75898276/
https://stackoverflow.com/questions/75898276/
https://stackoverflow.com/questions/78548625/
https://stackoverflow.com/questions/78548625/
https://stackoverflow.com/questions/76796341/
https://stackoverflow.com/questions/76796341/

[82] Stack Overflow. (2024). OpenAI API error: Your authentication token is not from valid issuer.
https://stackoverflow.com/questions/77896210/

[83] Stack Overflow. (2023). Authentication error with LangChain and OpenAI. https://
stackoverflow.com/questions/76322025/

[84] Stack Overflow. (2023). OpenAI Chat Completions API error: messages is required property.
https://stackoverflow.com/questions/75971578/

[85] Stack Overflow. (2024). How to format messages parameters in OpenAI GPT-4. https://
stackoverflow.com/questions/78566807/

[86] Stack Overflow. (2023). OpenAI Stream response not working as expected. https://
stackoverflow.com/questions/76125712/

48

https://stackoverflow.com/questions/77896210/
https://stackoverflow.com/questions/76322025/
https://stackoverflow.com/questions/76322025/
https://stackoverflow.com/questions/75971578/
https://stackoverflow.com/questions/78566807/
https://stackoverflow.com/questions/78566807/
https://stackoverflow.com/questions/76125712/
https://stackoverflow.com/questions/76125712/

2020-2021 2022 2023 2024
0

50

100

150

200

250

300

N
um

be
r o

f V
io

la
tio

ns

78

156

289

89
GPT-3 Launch

ChatGPT Release

GPT-4 & Function
Calling

Multi-modal
APIs

Total Contract Violations Over Time

Total Violations

2020-2021 2022 2023 2024
Time Period

0

50

100

150

200

250

300

N
um

be
r o

f V
io

la
tio

ns

Contract Violation Categories Over Time

Basic API Usage
Format Issues
Policy Violations
Tool Integration
Other

Period Total Dominant Issue New Categories

2020-2021 78 Basic API usage (45%) Token limits

2022 156 Format issues (32%) Chain orchestration

2023 289 Policy violations (28%) Function calling

2024 89 Tool integration (35%) Multi-modal contracts

Figure 7: Evolution of Contract Violations Over Time

49

	Introduction
	The Contract Challenge in LLM Systems
	Novel Contract Types in LLM Systems
	Toward a Formal Contract Model

	Research Objectives and Contributions
	1. Automated Contract Discovery Methodology
	2. Comprehensive Contract Taxonomy
	3. Empirical Analysis of Contract Violations
	4. Practical Enforcement Strategies

	Scope and Organization

	Background and Related Work
	Design by Contract and Software API Specifications
	Foundational Principles
	API Contract Violations in Practice

	Machine Learning API Contracts
	The Khairunnesa Study
	ML-Specific Contract Challenges

	Automated API Specification Mining
	Natural Language Processing Approaches
	Statistical and Dynamic Approaches
	Machine Learning for Specification Mining

	LLM API Challenges and Current Practices
	Documented LLM API Issues
	Emerging Tools for LLM Contract Enforcement

	Research Gap

	Methodology
	Overview
	Data Collection
	Online Forums and Q&A Platforms
	GitHub Issue Trackers
	Official Documentation
	Blog Posts and Tutorials

	Relevance Filtering
	Keyword-Based Filtering
	LLM-Based Semantic Filtering

	Contract Extraction
	Pattern-Based Extraction
	LLM-Assisted Extraction
	Validation and Deduplication
	Extended Collection: Production Agent Frameworks (2024-2025)

	Taxonomy Development
	Initial Framework
	Iterative Refinement
	Inter-rater Agreement

	Quantitative Analysis
	Frequency Analysis
	Ecosystem Analysis
	Impact Assessment
	Statistical Testing

	Validation Strategies
	Source Verification
	Practitioner Review
	Reproducibility Check

	Limitations

	Results: Taxonomy and Empirical Findings
	A Comprehensive Taxonomy of LLM API Contracts
	Single API Method (SAM) Contracts
	API Method Order (AMO) Contracts
	Hybrid Contracts

	Empirical Analysis of Contract Violations
	Overall Distribution
	Provider-Specific Patterns
	Framework-Level Analysis
	Violation Impact Analysis
	Temporal Evolution

	Case Studies of Common Violations
	Case 1: Token Limit Overflow
	Case 2: Output Format Non-Compliance
	Case 3: Content Policy False Positive
	Case 4: Rate Limit Violations
	Case 5: RAG Citation and Grounding Violations
	Case 6: Streaming SSE Assembly Violations

	Synthesis: Compositional Contract Failures in Production Systems
	Comparison with Traditional ML API Contracts

	Discussion: Contract Enforcement Strategies
	Static Analysis for Contract Verification
	Type Checking Extensions
	Prompt Analysis Tools

	Runtime Guardrails
	Output Format Validation
	Content Filtering Pipeline

	Framework Integration
	LangChain Integration
	Agent Framework Enhancements

	Evaluation of Enforcement Techniques
	Methodology
	Results
	Failure Analysis

	Best Practices for Contract-Aware Development
	Development Practices
	Testing Strategies
	Monitoring and Observability

	Implications for Stakeholders
	For Developers
	Immediate Actions
	Architectural Considerations

	For API Providers
	Documentation Improvements
	API Design Enhancements

	For Researchers
	Open Research Questions
	Tool Development Opportunities

	For the Broader Community
	Standardization Needs
	Educational Initiatives

	Future Work
	Dynamic Contract Learning
	ContractBench-LLM: A Benchmark for Reproducible Research
	Formal Methods for LLM Systems
	Cross-Modal Contract Frameworks
	Economic and Social Dimensions

	Conclusion

