
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An Empirical Study on Remote Code Execution in Machine
Learning Model Hosting Ecosystems

Anonymous Author(s)
Abstract
Model-sharing platforms (e.g., Hugging Face) have become cen-
tral to modern ML development, enabling easy sharing and reuse
of pre-trained models. However, this flexibility introduces serious
risks, as models may execute untrusted code during loading (e.g.,
via trust_remote_code). This paper presents the first large-scale
empirical study of custommodel-loading practices across five major
platforms, examining their prevalence, risks, and developer per-
ceptions. We quantify how often models rely on custom code and
identify those executing arbitrary Python files. Using Bandit, Cod-
eQL, and Semgrep, we detect security smells and categorize findings
by CWE identifiers, complemented by YARA-based malware sig-
nature scans. We further analyze each platform’s documentation,
APIs, and safeguards, and qualitatively study over 600 community
discussions. Our results reveal widespread unsafe defaults, incon-
sistent security enforcement, and pervasive developer confusion
about the risks of remote code execution.

CCS Concepts
• Security and privacy → Systems security; Software secu-
rity engineering; • Software and its engineering→ Software
infrastructure.

Keywords
Large Language Models (LLMs), Software Security, Remote Code
Execution, Model Hub

ACM Reference Format:

Anonymous Author(s). 2026. An Empirical Study on Remote Code Execu-
tion in Machine Learning Model Hosting Ecosystems. In Proceedings of
The Mining Software Repositories (MSR), April 12–18, 2026, Rio de Janeiro,
Brazil. ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
Large Language Models (LLMs) have been increasingly used in
day-to-day conversation and assisting tasks [3, 43, 53]. These mod-
els are based on different transformer architectures [68]and their
advancements. These have enabled the creation of models with
unprecedented scale, often comprising billions or even trillions of
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

parameters [43]. Models are continuously reused, re-tuned, and
evaluated for new tasks. Model hubs (or model registries) like
Hugging Face play a critical role in this ecosystem by providing
a centralized platform for hosting and sharing pre-trained models
and datasets [72]. As of October 2025, Hugging Face alone hosts
around 1.7 million models, fostering an open and collaborative
environment for developers and researchers worldwide.

Whilemodel hubs and their supporting libraries (e.g., transformers
[70] and PyTorch [61]), enable the seamless distribution of model
weights, some models inherently require code execution to function
correctly [24]. Early neural network architectures relied on stan-
dardized, composable layers that could be fully described through
configuration files. In contrast, current LLMs often introduce non-
standard architectural components (e.g., custom attention mecha-
nisms, domain-specific preprocessing steps, and hardware-aware
optimizations) that cannot be easily serialized without accompany-
ing executable code [71]. For example, when researchers develop a
new transformer variant with a novel positional encoding scheme,
theymust distribute not only the trainedweights but also the accom-
panying Python code that specifies how those weights are applied
during inference. Without this code, downstream users would need
to manually re-implement the architecture, making model sharing
inefficient and, in many cases, impractical [15].

Allowing code to run during model loading increases flexibility but
also introduces security risks [72]. One security issue arises from
unsafe serialization formats such as Python’s pickle, which can
execute arbitrary code during deserialization via the __reduce__
method—turning model files into potential attack payloads [4, 32].
Prior work has shown that malicious pickle-based models in the
wild have been used to deploy reverse shells and steal credentials [5,
72]. Another distinct security problem comes from custom remote
code execution, enabled when users load models with flags such
as trust_remote_code=True. This allows arbitrary Python modules
provided by model authors to run locally, extending the attack
surface beyond serialized data to unverified source code.

Consequently, loading models from public hubs creates implicit
trust relationships among users, model authors, and platforms (a
trust that is often misplaced [30]). While previous work has exam-
ined deserialization attacks [20, 20], the prevalence and risks of
custom remote code execution during model loading remain
largely unexplored. Therefore, this paper closes this gap through
a large-scale empirical study across five major model-sharing plat-
forms (Hugging Face [25], OpenCSG [48], ModelScope [40], Open-
MMLab [52], and PyTorch Hub [61]). We first quantify how often
models rely on custom loading code and identify those that exe-
cute arbitrary Python files. We then apply multiple static analysis
tools (Bandit, CodeQL, and Semgrep) to detect potential vulner-
abilities and categorize them by CWE identifiers. In parallel, we

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

analyze each platform’s documentation, APIs, and security con-
trols to assess mitigation practices, nd qualitatively examine over
600 developer discussions from GitHub, Hugging Face, PyTorch
Hub, and Stack Overflow to capture community perceptions and
misconceptions about security and usability.

The contributions of this work1 are:

• The first cross-platform, large-scale measurement study of un-
trusted model code execution across five major model-sharing
platforms: Hugging Face [25], ModelScope [40], OpenCSG [48],
OpenMMLab [52], and PyTorch Hub [61].

• We systematically detect and categorize security weaknesses
using three static analyzers in around 45,000 repositories con-
taining custom code. Moreover, we incorporate signature-based
malicious pattern detection using YARA [35] to identify potential
payloads.

• We analyze platform-level defenses, including warning systems,
static and dynamic scanning, and trust flag mechanisms.

• We create a taxonomy about developers’ perception about remote
code execution during model loading after examining around 600
developer discussions from forums, GitHub issues, pull requests,
and Q&A sites.

2 Background
2.1 Model Loading with Executable Code
Unlike traditional data files, modern ML models may require code
execution for technical reasons. Early neural networks consisted
of standardized layers that could be described solely by configura-
tion, but contemporary architectures implement novel mechanisms
(e.g., custom attention patterns, domain-specific preprocessing, etc.)
that cannot be expressed without executable code [71]. Thus, when
developers implement a new transformer variant with unique posi-
tional encoding, they must ship both the trained weights and the
Python code defining how those weights interact. The alternative
would require every user to manually reconstruct the architecture,
making large-scale model sharing impractical [15].

This technical needmanifests through platformAPIs that are simple
to use. When developers call from_pretrained or pipelinemethods,
the transformers library downloads multiple files, including Python
modules that execute with full system privileges when remote
code trust flags are enabled. Whenever the repository contains spe-
cific entry-point files, such as modeling_*.py, tokenizer.py, or
hubconf.py, they are automatically imported and executed as part
of the model initialization process. While these files often contain
legitimate code that defines how the model operates, an attacker
can embed malicious payloads in them that would execute with
the same privileges as any other local Python process. This means
that enabling trust_remote_code (for transformers) or trust_repo
(for PyTorch Hub) effectively grants remote repositories the ability
to run arbitrary Python code on the host machine. Platforms like
Hugging Face host over 1.7 million models, with thousands added
daily, making manual review impractical and automated scanning
insufficient [34].
1This study’s replication package is available at [1].

To illustrate, Figure 1 shows how model loading can trigger code
execution. On the left, a developer defines a custom configuration
class (DeepseekV3Config) that extends the transformers library’s
base configuration. This file, stored in the model repository, con-
tains Python code that can be executed when the model is loaded.
On the right, a user loads this same model from Hugging Face using
the pipeline API and sets trust_remote_code=True. This flag tells
the library to trust and run any Python code provided by the re-
mote repository, effectively downloading and executing unverified
scripts from the internet.

1. from transformers.configuration_utils import
PretrainedConfig

2. from transformers.utils import logging
3.
4. logger = logging.get_logger(__name__)
5.
6. DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7.
8. class DeepseekV3Config(PretrainedConfig):
9. ...

DeepSeek-R1/configuration_deepseek.py
1. from transformers import pipeline
2.
3. pipe = pipeline("text-generation",
4. model="deepseek-ai/DeepSeek-R1",
5. trust_remote_code=True)
6. messages = [
7. {"role": "user",
8. "content": "Who are you?"}
9.]
10. pipe(messages)

inference.py

v1-Model Serialization/Deserialization Example

Figure 1: Example of a custom configuration script (left) and
loading a custom model (right).

This customization mechanism introduces a serious security risk:
an attacker can upload a model repository containingmalicious
code to deliver payloads like reverse shells, keyloggers, or data exfil-
tration scripts [72]. Since the customization code executes automat-
ically during model loading, users who enable trust_remote_code

may unknowingly grant full system access to untrusted code. This
behavior makes large-scale model sharing both powerful and poten-
tially dangerous, especially when combined with the high volume
of new models uploaded daily.

2.2 Code Smells & Security Smells
Code smells are indicators of poor design or implementation choices
that may not immediately cause failures but often lead to main-
tainability issues and increased defect risk [10, 54]. They typically
reflect violations of good design principles, making software harder
to evolve and more error-prone.

A specific subset of code smells, called security smells, is associ-
ated with patterns that may introduce or signal the presence of
vulnerabilities [11, 63, 64]. These patterns do not always constitute
exploitable vulnerabilities but highlight code areas where security
controls are weak or outdated.

2.3 Threat Model
Custom model loading introduces complex trust boundaries among
three main stakeholders: model creators, platform maintainers, and
model consumers. Figure 2 provides an overview of our threat model,
which examines how these boundaries can be exploited when plat-
forms allow arbitrary code execution during model loading.

Adversary Assumptions. We assume that attackers have accounts on
model platforms and can upload models or modify existing reposi-
tories. Adversaries may also leverage community features, such as
discussions or pull requests, to disseminate or promote malicious
content. We consider two adversary types: (1) a malicious developer
who intentionally uploads a model with harmful customization

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Malicious

customization code

Embed
payload

Push
code

Compromised
maintener

Load malicious model

Original
model repository

User

Attacker
(malicious developer)

Malicious

customization code

Rogue
model repository

Push codeEmbed payload Load malicious model

Customization
code

Attacker
(AiTM attack)

User

Intercept

Load malicious model

Clone model
repository

Figure 2: Threat model overview

code, and (2) a compromised maintainer whose credentials or to-
kens were hijacked to distribute poisoned models under the guise of
a reputable author. Importantly, not all threats arise from deliberate
attacks. Model contributors who are unaware of secure publishing
practices may unintentionally introduce insecure code, effectively
expanding the threat surface without adversarial intent.

Threat Scenarios. Three threat scenarios exist (S1–S3):

S1 Malicious Fork. An attacker downloads an existing benign
model 𝑀 , changes the custom code with a harmful payload
(e.g., reverse shell), and uploads a modified model𝑀 ′ to their
own (rogue) repository while presenting it as an enhanced or
compatible version of the original. Model consumers would
need to set trust_remote_code=True to be able to use the
model, which would lead to the execution of the malicious
payload.

S2 Compromised Trusted Account. A trusted maintainer ac-
count is hijacked, allowing the attacker to upload a modified
model𝑀 ′ with malicious accompanying custom code directly
to a legitimate, widely used repository. Consumers may trust
the model due to its reputation, verified badges, or high down-
load counts. Similar to Scenario 1, attackers can embed arbi-
trary Python logic in initialization files or leverage dependency
manipulation. Social engineering and trust hijacking further in-
crease the likelihood of exploitation, as users are more inclined
to enable trust_remote_code=True for “trusted” sources.

S3 Attacker-in-the-middle (AiTM). An attacker intercepts or
tampers with the model distribution channel and modifies the
model’s custom code during transfer or dependency resolution
(e.g., via compromised mirrors, registries, or proxy layers). This
can also occur indirectly through poisoning or replacing cached
artifacts stored by hosting platforms (e.g., Hugging Face cache
directories), allowing the attacker’s modified version to be
loaded even if the original upstream repository remains clean.
As a result, when users enable trust_remote_code=True, they
may execute the injected payload from the cached or inter-
cepted model, effectively transforming a previously benign ar-
tifact into a malicious one. Attackers may exploit dependencies
and supply-chain manipulation, injecting malicious payloads at
download or cache resolution time. Since the model is cached
locally, future loads may execute the attacker’s payload even
without further network interaction.

Not all risks stem from malicious actors. Model creators with lim-
ited security awareness may unintentionally include unsafe ini-
tialization code, hard-coded credentials, or insecure dependency
calls. Although unintentional, such models can still be weaponized
post-deployment, expanding the platform’s overall attack surface
without deliberate adversarial behavior. Weak sandboxing, overly
permissive dependencies, and a lack of static or runtime checks al-
low insecure code to run automatically during model loading, mak-
ing these models soft targets for downstream exploitation.

Trust Relationships. Model consumers implicitly trust platform in-
terfaces and configuration defaults (e.g., trust_remote_code=True
or trust_repo=True) to safely retrieve and execute model code.
This trust is often amplified by perceived platform reputation or
download counts, whichmay lead users to overlookwarning prompts
or disable security mechanisms for convenience. Platform main-
tainers, in turn, trust model contributors to follow safe publishing
practices, while contributors depend on the platform to enforce
isolation and verification mechanisms. The intersection of these
assumptions creates a vulnerable trust boundary.

3 Methodology
3.1 Research Questions (RQs)
As shown in Figure 3, we answer four RQs that explore the preva-
lence, risks, and developers’ perceptions of custom model loading
across model hubs.

RQ1: To what extent is custom model loading required?

Model-sharing platforms, such as Hugging Face and ModelScope,
enable developers to provide custom code for loading or configuring
models. While these capabilities increase flexibility and support
novel architectures, they also introduce security risks within the
ecosystem. In this RQ, we investigate how many models hosted on
these platforms include custom code that is required to be executed
upon model loading.

RQ2: Do remote code implementations for custom mod-
els contain vulnerabilities, security smells, or malicious
payloads?

Allowing arbitrary code execution raises concerns about the intro-
duction of vulnerabilities and insecure practices. Previous work has
shown that code provided by the community may contain security
smells, such as unsafe deserialization [4, 5, 72]. In this RQ, we per-
form a systematic analysis of the models’ customization code to
determine the prevalence of vulnerabilities and potential exploit
vectors.

RQ3: What do the platforms offer for developers to miti-
gate the execution during model loading?

Platform hubs play a crucial role in enforcing safe defaults, pro-
viding comprehensive documentation, and implementing technical
safeguards (e.g., sandboxing, warning banners, or permission sys-
tems). In this RQ, we investigate the existing security mechanisms
provided by various platforms. We examine whether platforms pro-
vide static or dynamic checks, whether they expose developers and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

end-users to explicit warnings when running custom code, and
how policies such as trust_remote_code or trust_repo flags or
isolated execution environments are enforced in practice.

RQ4: What are the developers’ concerns around code exe-
cution during model loading?

Beyond technical vulnerabilities, it is crucial to understand the
perspective of developers who contribute to and use these models.
Their concerns may range from usability (e.g., friction in using
security mechanisms) to trustworthiness (e.g., fear of executing
malicious code) and maintainability (e.g., lack of long-term platform
support for their contributions). In this RQ, we collect and analyze
developer discussions from Hugging Face and PyTorch Hub forums,
GitHub discussions, pull requests, issues, and StackOverflow Q&A
platforms to understand practitioners’ concerns, misconceptions,
and expectations.

Retrieve metadata for all
model repositories

Model repos
metadata

Filter
repositories

Subset of
model repositories

« RQ1 »

Prevalence
results

Download custom
code files

Security Smell & Vulnerability Analysis « RQ2 »

Analysis
results

Python
code files

Hub
Model Sharing Platforms

« RQ3 »

List of Mitigations

Retrieve
discussions

Manual inclusion /
exclusion analysis

Open
Coding

Taxonomy

« RQ4 »

Q&A and Discussion
Platforms

Safety Mechanisms
Analysis

Documentation Review &
Repository Inspection

Documentations

Figure 3: Methodology Overview

3.2 Platform Selection
We first examined a recent list of popular model-sharing platforms
compiled by Jian et al. [72], which identified the top 15 model
hubs. We then applied the following inclusion criteria to determine
whether a given model hub (henceforth referred to as a “platform”)
qualified for our study. A platform was included only if it satisfied
all of the following conditions: (1) it is publicly accessible; (2) it
provides practical means to retrieve information from all hosted
model repositories (e.g., through APIs or web crawling); (3) the
hosted models can be programmatically fetched and instantiated
through standard model-loading APIs provided by transformers,
torch.hub, or their respective wrappers, without requiring any
reimplementation; and (4) it supports libraries or mechanisms that
permit the execution of custom code during model loading. After
this manual analysis, we identified 5 platforms for inclusion in
our study: Hugging Face [25], OpenCSG [48], ModelScope [40],
OpenMMLab [52], and PyTorch Hub [61].

3.3 Model Repositories Selection
After selecting the platforms, we collected metadata for all model
repositories published within these platforms. Specifically, we cap-
tured the repository’s access URLs, tags, and file list. Next, we

applied the following inclusion criteria to identify model reposito-
ries that require custom code execution during model loading. A
repository was included if it satisfied any of the following criteria:
(i) it was tagged with the custom_code tag; or (ii) it contained
one of the files tokenizer.py, __init__.py, or hubconf.py; or
(iii) it included a Python file whose name began with modeling_,
tokenization_, or configuration_. These conditions are based
on the documentation of the Pytorch Hub [60] and the transformers
library [24]. The OpenMMLab platform, on the other hand, has its
own library for loading custom models. Therefore, we included all
the repositories listed on this platform in our analysis.

3.4 Security Smell, Vulnerability, and Malicious
Payload Analysis

After collecting the models, we used three static analyzers to iden-
tify security smells and potential vulnerabilities: Bandit [56], Cod-
eQL [13], and Semgrep [62]. To further identify malicious patterns
and payload signatures, we employed YARA [35]. These tools pro-
vide complementary coverage, combining lightweight static analy-
sis with signature-based detection of malicious code.

Bandit (v1.8.6). It is a security linter that statically inspects the ab-
stract syntax tree (AST) of Python code to detect common vulnera-
bilities such as the use of unsafe functions (eval, exec, pickle.load),
weak cryptographic algorithms, hardcoded credentials, and inse-
cure temporary file creation. It also maps findings to Common
Weakness Enumeration (CWE), which is a list of common types of
software vulnerabilities [36]. We executed Bandit recursively on
all Python files extracted from each model repository, generating
structured JSON outputs for aggregation and comparison.

CodeQL (v2.15.0). It performs static analysis by compiling source
code into a relational database of program elements (e.g., functions,
variables, control flow, and data flow) and executing declarative QL
queries to detect security flaws. It enables inter-procedural and data-
flow analysis for complex vulnerabilities such as injection, path tra-
versal, and insecure deserialization. We executed CodeQL with the
official query pack provided by GitHub Security Lab [12].

Semgrep (v1.139.0). It is a lightweight, multi-language static ana-
lyzer that uses rule-based pattern matching to detect both general
and domain-specific security issues. Unlike CodeQL, which requires
query compilation, Semgrep matches syntactic and semantic pat-
terns directly in the codebase, making it efficient for large-scale
scanning. We used its built-in rulesets to identify security miscon-
figurations, unsafe API usage, and insecure imports across various
model repositories. Findings were grouped by CWE and severity
level to facilitate cross-tool comparison.

YARA (v4.5.2). It is a rule-based pattern-matching engine widely
used in malware detection and digital forensics [41, 42]. Unlike
the previous static analyzers, which focus on identifying insecure
coding patterns or API misuse, YARA detects known malicious
behaviors through signature-based matching of strings, byte se-
quences, and regular expressions. This approach allows it to un-
cover embedded payloads that may not manifest as conventional
security smells—for example, reverse shells, obfuscated network
beacons, or credential-stealing scripts. The official YARA GitHub

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

repository [69] provides a reference to a curated list of well-known
rule sources [28]. From these 70 publicly available sources, we suc-
cessfully compiled 7,657 rules from 25 sources to scan the collected
repositories (they failed to compile rules due to them being outdated
with respect to the version we have used in our work).

3.5 Platform Mitigation
To answer RQ3, we systematically examined each platform to iden-
tify mechanismsmitigating unsafe model loading.We first reviewed
official documentation and API references to understand declared
security policies for custom code execution. We then analyzed open-
source repositories (if available) to verify enforcement of safety
configurations such as trust_remote_code or trust_repo. From
these sources, we identified their used safeguards (e.g., static and
dynamic checks, warning prompts, sandboxed execution, etc.) and
compared them across platforms to evaluate consistency, enforce-
ment, and gaps.

3.6 Developers’ Concerns
To answer our RQ4, we focused on the Hugging Face and PyTorch
Hub forums, GitHub discussions, pull requests, issues, and the Stack
Overflow Q&A platform. We searched these platforms using the
keywords trust_remote_code and trust_repo. We identified a
total of 418 Hugging Face forum posts, 354 GitHub discussion
posts, and 289 Stack Overflow posts. For GitHub issues, there were
more than 13,000 retrieved issues, and for GitHub pull requests,
more than 4,000 PRs, using the aforementioned query. Thus, we
kept only issues and PRs that included any of the search query
keywords in their titles. Then, two authors manually filter them
in parallel to include them in our study based on their relevance.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement between the two authors [7]. A senior author with over
10 years of experience resolved the discrepancies.

After manually filtering for relevance to our study, we retained 27
GitHub discussions, 222 GitHub issues, 297 GitHub pull requests, 27
Stack Overflow posts, and 39 Hugging Face discussions. An entry
was deemed as relevant if it explicitly discussed the functional-
ity, security implications, integration issues, maintenance actions,
or community understanding related to trust_remote_code or
trust_repo, rather than merely mentioning the keyword in a code
snippet as shown in the example in Listing 1. It is important to
note that although we collected 23 discussions from PyTorch Hub’s
forums, none of them were relevant to our study.

We then applied an open coding approach to the selected posts [8],
carefully reading, analyzing, and annotating each post with con-
ceptual labels (codes) reflecting developers’ expressed sentiments,
challenges, and misunderstandings. The coding was conducted
collaboratively by the authors, whose software development expe-
rience ranged from 4 to 12 years. To ensure consistency, disagree-
ments were discussed in weekly calibration meetings. If there was a
discrepancy, the senior author mitigated it. We iteratively reviewed
and refined the codes through regular calibration meetings until
conceptual saturation was achieved.

4 Results
4.1 RQ1: Prevalence of Custom Models
Table 1 provides a summary of the collected model repositories
containing custom code. For Hugging Face, OpenCSG, and Mod-
elScope, approximately 2% to 4% of the models include custom
code. In contrast, for OpenMMLab and PyTorch Hub, all available
repositories rely on custom code.

Table 1: Result of collected repositories with custom codes.

Platform # Repos # Repos with
custom code (%) Supported Libs.

Hugging Face 1,699,968 35,953 2.11% transformers
OpenCSG 192,556 6165 3.20% transformers
ModelScope 68,736 3193 4.65% PyTorch & transformers
OpenMMLab 16 16 100.00% MMengine & PyTorch
PyTorch Hub 26 26 100.00% PyTorch

Figure 4 depicts the top 10 tag distributions of custommodels across
Hugging Face, ModelScope, OpenCSG, OpenMMLab, and PyTorch
Hub platforms. For Hugging Face, the majority of custom models
are used for text generation (66.5%), followed by feature extraction
(approximately 10%). In contrast, for OpenCSG, around 21.8% of the
custommodels are used for text generation, while roughly 15.1% are
associated with speech-related tasks. Finally, for ModelScope, the
distribution indicates that most custom models are concentrated
in scientific and domain-specific applications, reflecting its distinct
usage patterns compared to the other two platforms. For PyTorch
Hub, most models focus on vision, speech, and audio tasks, whereas
in OpenMM Lab, model repositories mainly contain custom models
for object detection and other vision tasks.

4.2 RQ2: Security Analysis
Bandit Results. Table 2 presents the distribution of vulnerability
types (CWE IDs) and the top Bandit issues by severity across five
major model-sharing platforms. Across all platforms, CWE-703
(Improper Check or Handling of Exceptional Conditions) is
by far the most common weakness, especially on Hugging Face
(78%) and ModelScope (80.95%), indicating that model repositories
frequently include weak or missing exception handling logic. This
pattern is associated with the Bandit low-severity rule B101 (assert
statements), which alone accounts for 60–80% of all detected issues
on most platforms. While these may not directly expose models
to immediate exploits, they represent fragile or insecure coding
practices that can lead to reliability and maintainability problems.

For Hugging Face, out of 35,953 repositories with custom codes,
3,743 (10.41%) exhibited at least one security smell. In addition to
CWE-703, CWE-494 (Download of Code Without Integrity Check)
and CWE-259 (Use of Hard-coded Password) were common. For
OpenCSG, despite a relatively modest “smelly” repository rate of
2.34%, the absolute number of issues is the highest among all plat-
forms. Unsafe downloads (B615, 15.11%) and unsafe PyTorch loads
(B614, 5.81%) were particularly common. ModelScope shows the
lowest proportion of affected repositories (0.33%), yet a similar
CWE profile dominated by CWE-703 and CWE-259. The high preva-
lence of B101 issues indicates poor exception-handling practices.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Tag distributions of the custom models across different platforms.

Table 2: Top 3 CWE and top 1 Bandit issue per severity across platforms.

Platform # Repos Analyzed # Smelly Repo (%) Top 3 CWEs Top 1 Issue per Severity (H, M, L)
Hugging Face 35,953 3,743 (10.41%) CWE-703 (Exception Handling): 160,967 (78.09%)

CWE-494 (No Integrity Check): 19,840 (9.62%)
CWE-259 (Hard-coded Password): 13,919 (6.75%)

H1. B605 – Starting a process with a shell. (394; 0.19%)
M1. B615 – Unsafe Hugging Face Hub download. (17,042; 8.01%)
L1. B101 – Use of assert detected. (157,788; 74.18%)

OpenCSG 192,556 4,503 (2.34%) CWE-703 (Exception Handling): 40,433 (64.55%)
CWE-494 (No Integrity Check): 13,298 (21.23%)
CWE-502 (Unsafe Deserialization): 4,426 (7.07%)

H1. B605 – Starting a process with a shell. (221; 0.34%)
M1. B615 – Unsafe Hugging Face Hub download. (9,957; 15.11%)
L1. B101 – Use of assert detected. (39,717; 60.28%)

ModelScope 68,736 229 (0.33%) CWE-703 (Exception Handling): 20,490 (80.95%)
CWE-259 (Hard-coded Password): 2,584 (10.21%)
CWE-494 (No Integrity Check): 1,455 (5.75%)

H1. B605 – Starting a process with a shell. (22; 0.09%)
M1. B615 – Unsafe Hugging Face Hub download. (1,278; 4.95%)
L1. B101 – Use of assert detected. (20,169; 78.17%)

OpenMMLab 16 12 (75.00%) CWE-703 (Exception Handling): 848 (86.44%)
CWE-259 (Hard-coded Password): 124 (12.64%)
CWE-502 (Unsafe Deserialization): 6 (0.61%)

H1. B301 – pickle used to deserialize untrusted data. (4; 0.41%)
L1. B101 – Use of assert detected. (848; 86.44%)

PyTorch Hub 26 12 (46.15%) CWE-78 (OS Command Injection): 42 (35.90%)
CWE-703 (Exception Handling): 40 (34.19%)
CWE-502 (Unsafe Deserialization): 20 (17.09%)

H1. B605 – Starting a process with a shell. (2; 7.69%)
M1. B301 – pickle used to deserialize untrusted data. (1; 3.85%)
L1. B101 – Use of assert detected. (34; 30.77%)

Although the total number of repositories is small (16) for Open-
MMLab, 75% of them contained security smells. For this platform,
CWE-703 accounted for 86.44% of issues, and unsafe deserializa-
tion (B301) and eval usage (B307) were notable medium-severity
findings. For PyTorch Hub, nearly half of the repositories (46.15%)
contained security issues. Unlike other platforms, CWE-78 (OS
Command Injection) was the most common weakness, reflecting
the frequent use of shell commands and eval functions. This con-
firms that this platform is particularly susceptible to remote code
execution risks.

Semgrep Results. Table 3 summarizes the distribution of vulnerabil-
ity types (CWE IDs), top OWASP categories, and the most frequent
Semgrep rule violations across major model-sharing platforms. Un-
like Bandit’s results, which primarily had lower-severity coding
smells, the Semgrep analysis reveals a clear concentration of security-
critical issues, more specifically related to unsafe deserialization,
code injection, and integrity failures. Across all platforms, CWE-
502 (Deserialization of Untrusted Data) is the most common
weakness, consistently appearing in 50–80% of the flagged reposi-
tories. Additionally, CWE-95 (Eval Injection), CWE-676 (Use of Po-
tentially Dangerous Function), and CWE-706 (Improper Handling
of Variadic Functions) appear across platforms. The top OWASP
categories identified through Semgrep closely align with injection-
based threats. Injection vulnerabilities dominate onmost platforms
(e.g., 54.6% on Hugging Face and 67.9% on PyTorch Hub), followed
by Insecure Deserialization and Integrity Failures.

Hugging Face had 8.65% of its repositories affected, with more
particularly CWE-502 and CWE-95. A small proportion (0.02%) of
repos from OpenCSG showed issues, with CWE-502 dominating
(82.76%). ModelScope shows a similar low impact (0.05%), but CWE-
502 is still dominant (62.5%). The presence of CWE-22 and CWE-
502 highlights insecure file operations and deserialization risks.
For PyTorch Hub, there is a highest relative impact (53.85%), with
CWE-502 and CWE-95 dominating.

CodeQL Results. Table 4 shows the distribution of CWE IDs and
the most frequent CodeQL rule violations among Hugging Face,
OpenCSG, andModelScope as it did not find any issues in OpenMM-
Lab and PyTorch Hub. Across all platforms, CWE-117 (Improper
Output Neutralization for Logs) and CWE-020 (Improper In-
put Validation) are the most common issues. Additional findings
include CWE-079 (Cross-site Scripting), CWE-209 (Information
Exposure Through an Error Message), and CWE-022 (Path Traver-
sal) are also frequent. Most issues detected by CodeQL are under
the “Timing attack against secret” query, accounting for more
than 90% of all detections across platforms. This pattern indicates
that many repositories rely on non-constant-time cryptographic
comparisons, which are vulnerable to side-channel attacks.

About 5.87% of repositories were flagged with CodeQL alerts for
Hugging Face. CWE-117 accounted for over half of all detected
weaknesses (53.49%), showing poor log sanitization practices. Al-
though the absolute number of flagged repositories is low (32) for
OpenCSG, CWE-215 (Information Exposure Through Debug Infor-
mation) and CWE-730 (OWASP Top Ten 2004 Category A9) stand
out. A small proportion of repositories (0.25%) from ModelScope
contain CWE-020 (78.26%), CWE-116 (Improper Encoding or Escap-
ing), and CWE-079. Timing-attack patterns again dominate (98.75%),
often coupled with weak cryptographic configuration.

YARA Results. Table 5 presents the distribution of YARA signature
matches across the model-sharing platforms. The results reveal that
while malware-related signatures are concentrated in a relatively
small fraction of repositories, and across all platforms, the most
frequently triggered YARA signatures belong to the category of
environmental evasion indicators (e.g., Qemu, VMWare, VBox
detections).

Among 35,953 repositories of Hugging Face, 2,924 (8.13%) exhibited
at least one YARA malicious payload match. The top detections are
JT 3D Visualization format (57.72%), followed by VBox, Qemu,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Top 3 CWE, OWASP, and Semgrep issues across platforms.

Platform # Smelly Repos (%) Top 3 CWEs Top 3 OWASP Top 3 Rules
Hugging Face 3,110 (8.65%) CWE-502 (Unsafe Deserialization): 7,904 (74.54%)

CWE-95 (Eval Injection): 1,593 (15.02%)
CWE-676 (Dangerous Function): 466 (4.39%)

Injection: 1,894 (50.23%)
Integrity Failures: 597 (15.83%)
Insecure Deserialization: 595 (15.78%)

pickles in pytorch: 7,252 (56.51%)
numpy in pytorch: 3,048 (23.75%)
eval detected: 1,502 (11.70%)

OpenCSG 1,141 (0.59%) CWE-502 (Unsafe Deserialization): 5,449 (82.81%)
CWE-676 (Dangerous Function): 451 (6.85%)
CWE-95 (Eval Injection): 344 (5.23%)

Injection: 616 (30.36%)
Integrity Failures: 493 (24.30%)
Insecure Deserialization: 416 (20.50%)

pickles in pytorch: 4,923 (67.73%)
numpy in pytorch: 1,279 (17.60%)
automatic memory pinning: 414 (5.70%)

ModelScope 581 (0.85%) CWE-502 (Unsafe Deserialization): 526 (72.65%)
CWE-95 (Eval Injection): 144 (19.89%)
CWE-706 (Incorrectly-Resolved Name): 28 (3.87%)

Injection: 159 (58.46%)
Insecure Deserialization: 38 (13.97%)
Integrity Failures: 38 (13.97%)

pickles in pytorch: 484 (46.45%)
numpy in pytorch: 351 (33.69%)
eval detected: 143 (13.72%)

OpenMMLab 2 (12.50%) CWE-502 (Unsafe Deserialization): 8 (61.54%)
CWE-95 (Eval Injection): 3 (23.08%)
CWE-706 (Incorrectly-Resolved Name): 2 (15.38%)

Insecure Deserialization: 8 (38.10%)
Integrity Failures: 8 (38.10%)
Injection: 3 (14.29%)

avoid pickle: 8 (61.54%)
eval detected: 2 (15.38%)
non-literal import: 2 (15.38%)

PyTorch Hub 10 (38.46%) CWE-502 (Unsafe Deserialization): 25 (49.02%)
CWE-95 (Eval Injection): 16 (31.37%)
CWE-676 (Dangerous Function): 5 (9.80%)

Injection (A03:21): 19 (67.86%)
Injection (A01:17): 3 (10.71%)
Insecure Deserialization: 2 (7.14%)

pickles in pytorch: 23 (46.94%)
eval detected: 16 (32.65%)
automatic memory pinning: 5 (10.20%)

Table 4: Top 3 CWE and CodeQL issues across platforms.

Platform # Smelly Repo (%) Top 3 CWEs Top 3 Rules
Hugging Face 2,111 (5.87%) CWE-117 (Log Injection): 376 (53.49%)

CWE-20 (Input Validation): 101
(14.37%)
CWE-79 (XSS): 98 (13.94%)

Timing attack against secret: 53,432
(97.82%)
Log Injection: 376 (0.69%)
All Cryptographic Algorithms: 345
(0.63%)

OpenCSG 32 (0.00%) CWE-215 (Debug Info Exposure): 22
(23.91%)
CWE-730 (ReDoS): 22 (23.91%)
CWE-79 (XSS): 17 (18.48%)

Timing attack against secret: 6,931
(94.63%)
All Cryptographic Algorithms: 140
(1.91%)
Hash Algorithms: 140 (1.91%)

ModelScope 169 (0.25%) CWE-20 (Input Validation): 18 (78.26%)
CWE-116 (Output Encoding): 3
(13.04%)
CWE-79 (XSS): 2 (8.70%)

Timing attack against secret: 6,571
(98.75%)
All Cryptographic Algorithms: 23
(0.35%)
Hash Algorithms: 23 (0.35%)

Table 5: Top 3 YARA issues across platforms.

Platform # Smelly Repo (%) Top 3 Rules
Hugging Face 2,924 (8.13%) JT 3D Visualization format: 32,549 (57.72%)

VBox Detection: 7,560 (13.41%)
Qemu Detection: 7,546 (13.38%)

OpenCSG 40 (0.00%) Big Numbers: 70,798 (53.13%)
VMWare Detection: 16,552 (12.42%)
VBox Detection: 15,476 (11.61%)

ModelScope 212 (0.31%) JT 3D Visualization format: 5,046 (75.16%)
VBox Detection: 524 (7.80%)
Qemu Detection: 524 (7.80%)

OpenMMLab 12 (75.00%) Is Suspicious: 38 (35.51%)
TTA lossless compressed audio: 36 (33.64%)
Audio Interchange File Format: 18 (16.82%)

PyTorch Hub 3 (11.53%) Qemu Detection: 6 (23.08%)
VBox Detection: 6 (23.08%)
VMWare Detection: 6 (23.08%)

and VMWare Detection signatures, which collectively account for
more than 95% of all hits. For OpenCSG, the affected repositories
are only 40, but they had similar issues as Hugging Face, in addition
to the cryptographic malware. For ModelScope’s YARA detections
are mainly environmental evasion indicators, such as JT 3D
Visualization format, VBox Detection, and Qemu Detection.
Despite the small size of the ecosystem, OpenMMLab exhibits a
high smelly repo rate of 75.00%, with common YARA including
Is Suspicious (35.51%) and audio file signatures such as TTA and
AIFF. For PyTorch Hub, 11.53% of repositories contained at least one
YARA signature. Its top rules are evenly distributed across Qemu,
VBox, and VMWare Detection (23.08% each).

4.3 RQ3: Platform Mitigation Strategies
Table 6 summarizes the securitymechanisms of each platform.

4.3.1 Trust Models and Verification. Platforms exhibit three dis-
tinct trust paradigms. Hugging Face, ModelScope, and PyTorch
Hub follow trust-all models where any user can freely upload
models. Hugging Face augments this with verified badges for orga-
nizational identity (not security audits) [19], while PyTorch Hub
shifts trust decisions to users via the trust_repo parameter [61].
OpenMMLab implements strict verify-first with maintainer review
of all contributions through pull requests [50]. OpenCSG repre-
sents a middle ground with community trust, allowing open uploads
with optional content moderation [44, 47].

Only Hugging Face operates comprehensive automated security
scanning, triggering on every push with ClamAV (malware), Pick-
leScan (pickle/RCE), TruffleHog (secrets), plus third-party scanners
(Protect AI Guardian, JFrog) [16, 17, 22]. However, scans target
known patterns rather than comprehensive static analysis, leaving
residual RCE risks [18, 27]. OpenCSG [48], ModelScope [40], and
PyTorch Hub [61] have no documented platform-level automated
scanning.OpenMMLab relies on human reviewwithout automated
scanning [49]. No platform implements comprehensive sandboxing
for custom code execution during model loading.

4.3.2 User-Facing Protections. Hugging Face provides the most
comprehensive user protections: verified organizational badges [18],
prominent UI banners for trust_remote_code=True, file badges (ok/in-
fected), a dedicated security documentation hub [21], and SafeTen-
sors support [16]. However, model card code snippets lack inline
warnings about trust_remote_code risks. PyTorch Hub has docu-
mentation warnings emphasizing that “models are programs” [57]
with interactive prompts via trust_repo [59, 61]. ModelScope
provides only post-download trust_remote_code warnings [9, 39].
OpenCSG includes community guidelines [46] but lacks explicit
trust_remote_code warning documentation. OpenMMLab has no
warnings due to its curated, reviewed model zoo [50, 51].

4.4 RQ4: Developers’ Concern
From our systematic analysis of developers’ discussions surround-
ing the trust_remote_code mechanism, we derived a taxonomy
of concerns observed across forums, issue trackers, and community
posts (Figure 5) .

Compatibility and Integration Issues. This category represents dis-
cussions where developers report integration failures, incompati-
bilities, or unexpected behavior when enabling the trust flag. These
posts often feature vague complaints such as “it doesn’t work”, “the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Comparison of security and trust mechanisms across model-sharing platforms verified against official documentation.

Platform Upload Verification Trust Model Malware Scanning Warning Systems User Protection
Hugging Face Automated scanning [16, 17] Trust-all with verified badges [19] Yes – comprehensive multi-layered [6,

18]
UI warnings, file badges (ok/infected),
& verified badges [18]

Documentation hub [21], UI warn-
ings, SafeTensors support [16]

OpenCSG Open uploads via Git or web [47] Community trust [45] None documented [46] None documented [46] Documentation (community guide-
lines) [46]

ModelScope No platform-level automated scan-
ning documented [37]

Trust-all (no verification) [38] None – no platform-level scan-
ning [37]

Post-download trust_remote_code
warnings only [9, 39]

Documentation,
trust_remote_code parameter [39]

OpenMMLab Maintainer pull-request review [50] Verify-first [50] None documented [49] None documented [49] Documentation (reviewed code) [51]
PyTorch Hub No automated verification [58] Trust-all with trust_repo parame-

ter [58]
None documented [58] Interactive prompts (trust_repo),

deprecation warnings [58, 59]
Strong documentation warnings:
“models are programs” [57]

Misconceptions & Confusion

Misunderstanding Trust Semantics

Overgeneralization

Security and Trust Concerns
Fear of Malicious Code

Trust Model Ambiguity
Usability & Documentation

Challenges

Error Handling & Debugging

Flag Placement Confusion

Poor Documentation

Expectations for Official

Support and Maintainability

Long-Term Support Concerns

Demand for Native Integration

Deprecation FrustrationsFlag vs. Revision Confusion

Compatibility and Integration

Issues

Pipeline Incompatibility

Platform Deployment Barriers

Version Conflicts

Desire to Avoid Remote Code

Execution

Leaderboard / Evaluation Constraints

Manual Workarounds

Figure 5: Taxonomy of Developers’ Concerns.

model fails to load”, or “no support for this flag”, typically accompa-
nied by minimal debugging information.

• Pipeline Incompatibility: A recurring sub-theme involves fail-
ures when loading models through pipelines or inference APIs.
Because the trust flag is not consistently propagated through
these abstractions, developers experience silent failures or partial
functionality, requiring non-trivial debugging. These cases often
reveal architectural gaps between the core model loaders and
downstream pipeline wrappers.

• Platform Deployment Barriers:Many developers face diffi-
culties deploying trust-dependent models on managed hosting
platforms such as SageMaker, Inference Endpoints, or custom
cloud containers. Restrictions on executing remote code, secu-
rity sandboxing, and the lack of explicit trust flag support in
deployment configurations contribute to deployment dead ends.

• Version Conflicts: Another dominant sub-pattern involves ver-
sioning issues. Breakages often occur due to mismatches between
the installed library version and the model’s expected environ-
ment. Posts frequently cite outdated transformers packages,
missing backward compatibility, or changes in the trust flag’s
default behavior across versions. These issues can cascade as
small version drifts can break complex pipelines.

Desire to Avoid Remote Code Execution. This category captures dis-
cussions where developers explicitly express their reluctance or
refusal to enable the trust flag. Unlike compatibility issues, these
concerns stem from security or policy perspectives, or from a gen-
eral mistrust of executing third-party code.

• Leaderboard / Evaluation Constraints: In competitive or
benchmarking contexts, enabling trust flags is sometimes ex-
plicitly forbidden. This restriction stems from fairness, repro-
ducibility, or sandboxing requirements, forcing developers to
look for alternative workarounds.

• ManualWorkarounds:Developers frequently fork repositories,
manually download and edit model files, or patch library inter-
nals to bypass trust requirements. While these ad-hoc solutions

may allow immediate progress, they introduce technical debt,
security uncertainty, and maintenance challenges downstream.

Expectations for Official Support and Maintainability. We found
discussions that showed expectations from the community for up-
stream maintainers and platform providers to “just make it work”.
This category reflects the expectation gap between what develop-
ers assume the trust flag should offer (automatic, safe, supported
execution) and what is actually implemented (manual flag toggling,
fragmented support, and inconsistent documentation).

• Demand for Native Integration: Developers requested that
maintainers integrate model-specific custom code directly into
official libraries, thereby removing the need for explicit trust flags.
This reflects a preference for official, standardized mechanisms
over user-managed trust settings.

• Deprecation Frustrations: As the trust mechanism and related
APIs evolve, developers face broken pipelines and inconsistent
behavior. Complaints in this sub-category often highlight insuf-
ficient deprecation notices, breaking changes without migration
guides, and a lack of backward compatibility.

• Long-Term Support Concerns: Developers working in produc-
tion environments or regulated domains express concern over
whether trust-based model integrations will remain viable in the
future. These concerns are often tied to compliance, maintenance,
and stability over multiple product cycles.

Misconceptions and Confusion. Not all developer challenges arise
from genuine technical limitations. Some stemmed from an in-
complete or incorrect understanding of how trust_remote_code
operates.

• Flag vs. Revision Confusion: Developers often conflate the
trust flag with revision pinning or version control, mistakenly
believing that setting a revision automatically enables trust or
vice versa.

• Misunderstanding Trust Semantics:Many users incorrectly
assume that enabling the flag merely grants permission for meta-
data loading, not remote code execution. This misinterpretation
may lead to underestimating security implications or failing to
configure environments correctly.

• Overgeneralization: Another common misconception involves
assuming that the trust flag behaves uniformly across all model
architectures and frameworks. In practice, its support is uneven,
leading to mismatched expectations and implementation failures.

Security and Trust Concerns. It represents a distinct and high-stakes
theme in developer discourse. Here, developers explicitly reference
potential or perceived security risks associated with enabling trust

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

flags. Unlike the “Desire to Avoid RCE” category, which is attitudi-
nal, this category focuses on explicit threat articulation.

• Fear of Malicious Code: Developers express concerns about ar-
bitrary code execution, supply chain compromises, or untrusted
contributors injecting malicious payloads. These discussions fre-
quently reference standard security practices, organization-level
security policies, or compliance concerns.

• Trust Model Ambiguity: Many developers do not fully under-
stand what “trusting” a model entails at the technical level (e.g.,
which parts of the repository are executed, what isolation exists,
or what verification is done). This lack of transparency fuels
suspicion and defensive behavior.

Usability and Documentation Challenges. Even when the trust mech-
anism works as intended, poor documentation, unclear error mes-
sages, or confusing flag placement can create technical barriers.

• Error Handling & Debugging: Many developers encounter
non-informative or misleading error messages when enabling or
failing to enable the trust flag. These debugging hurdles often
prolong troubleshooting cycles.

• Flag Placement Confusion: Developers frequently struggle to
identify where the trust flag should be set (e.g., in CLI arguments,
in pipeline calls, or at model initialization), especially when
documentation is inconsistent across versions.

• Poor Documentation:We found posts citing missing, incom-
plete, or outdated documentation, a lack of minimal working
examples, and inconsistent terminology.

5 Discussion
5.1 Ecosystem-wide Security Exposure
Our findings (Table 1) show that themodel-sharing ecosystem
is broadly and unevenly exposed to security risks. While only
2-4% of models on platforms such as Hugging Face, ModelScope,
and OpenCSG require custom code, this seemingly small subset rep-
resents around 45,000 repositories containing code executed at load
time. Platforms such as OpenMMLab and PyTorch Hub rely entirely
on custom code, increasing their systemic attack surface.

Static analysis with Bandit and Semgrep identified two major vul-
nerability clusters. First, low-severity but pervasive coding smells
(e.g., CWE-703, B101 assert statements) appear across 60–80% of
affected repositories, reflecting weak defensive programming prac-
tices. Second, high-impact injection and deserialization vul-
nerabilities (e.g., CWE-502, CWE-95, CWE-78) were widespread,
particularly on PyTorch Hub and Hugging Face, where dynamic
code execution via pickle and eval is common. Semgrep analysis
identified injection and insecure deserialization as the top OWASP
categories, underscoring systemic risks of arbitrary code execution
at model load time. Notably, the dominance of CWE-117 and CWE-
20 in CodeQL results reinforces our observation of low-severity but
pervasive security smells across the ecosystem. Although CWE-117
issues may seem benign, their combination with insecure crypto-
graphic patterns and unvalidated inputs increases the attack surface.
Our CodeQL analysis further underscores the uneven security
exposure across model-sharing platforms (Table 4). We found a
pattern of cryptographic weaknesses: nearly all flagged repositories

(over 97%) contain “Timing attack against secret” issues, a Cod-
eQL rule that typically signals missing constant-time operations or
insecure key handling. While these findings may not always indi-
cate immediately exploitable flaws, their pervasiveness reflects weak
default security hygiene in model repository codebases.

Importantly, these exposures are not uniform. OpenCSG, despite
a low percentage of smelly repos, contributes the highest abso-
lute number of issues due to its massive scale. PyTorch Hub, with
a smaller ecosystem, has a disproportionately high rate of high-
severity issues, highlighting differences in platform trust boundaries
and code review practices.

5.2 Gaps Between Security Mechanisms and
Developer Practices

The analysis of platform security mechanisms (Table 6) reveals
a misalignment between available safeguards and how de-
velopers interact with model repositories. Hugging Face, for
instance, operates the most advanced malware scanning pipeline,
yet unsafe practices persist widely, including reliance on pickle
serialization and unpinned revision loading. The presence of CWE-
502 and CWE-95 in hundreds of repositories demonstrates that
technical defenses alone are insufficient to change devel-
oper behavior. Similarly, ModelScope issues warning banners for
trust_remote_code but lacks sandboxing or pre-upload verifica-
tion, allowing risky code to propagate. OpenCSG and PyTorch Hub
provide minimal automated scanning, relying instead on commu-
nity trust or basic user prompts (trust_repo). The high concentra-
tion of injection- and eval-based vulnerabilities in the PyTorch Hub
underscores the risks of such lightweight defenses. Furthermore,
the low adoption of secure formats such as Safetensors (only 6.6%
on Hugging Face as of August 2025) shows that safer alternatives
are not being embraced at scale, often due to developer inertia,
ecosystem lock-in, or lack of clear incentives.

5.3 Results Implications
Our findings have implications for both academia and industry.

For Platform Operators. Platforms must move beyond passive warn-
ing systems toward enforced security boundaries, including
default sandboxing of untrusted custom code, mandatory integrity
checks, and stricter upload verificationworkflows. Richer developer-
facing telemetry (e.g., inline vulnerability alerts, dependency prove-
nance) can bridge the gap between automated scanning and practi-
cal adoption of secure practices.

For Developers and Maintainers. The results emphasize that devel-
opers play a decisive role in the security posture of model hubs.
Reliance on pickle and eval-based code should be minimized or
replaced with safe loading alternatives. Incorporating secure de-
faults, revision pinning, and code review checklists can help reduce
CWE hotspots such as CWE-502 and CWE-95.

For Researchers. Our work showed that though platforms used
shared libraries underneath, they have significant differences in
handling custom code in model loading. There needs to be work on
automated enforcement frameworks for trust boundaries, inte-
grating cryptographic integrity verification with runtime isolation.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Our results indicate that tools such as CodeQL can reveal deep
structural weaknesses in model repository ecosystems that are
not surfaced by conventional scanners alone. This creates opportu-
nities for building automated enforcement frameworks that couple
vulnerability scanning with upload-time checks, runtime sandbox-
ing, and integrity enforcement. Future work can also examine the
adoption barriers for secure coding practices, especially around
cryptographic operations, to close the gap between warnings and
actionable defenses.

5.4 Threats to Validity
Internal Validity. A primary internal threat lies in the accuracy and
completeness of our static analysis. Although we employed three
well-established tools—Bandit, CodeQL, and Semgrep—to identify
security smells and CWE patterns, they may produce false positives
or false negatives. However, Siddiq et al. show Bandit has 90.79%
precision [65]. Semgrep, CodeQL, and YARA are widely used in
the research community [2, 14, 31, 33, 41, 42, 66, 67]. Moreover, we
manually analyzed discussion posts to conduct open-coding. As
mentioned before, this coding was conducted collaboratively by the
two authors, whose software development experience ranged from
4 to 12 years, with disagreements resolved by the senior author.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement [7].

External Validity. Our results may not fully generalize beyond the
platforms studied. We focused on five major platforms—Hugging
Face, OpenCSG, ModelScope, OpenMMLab, and PyTorch Hub—that
dominate the model-sharing ecosystem. For example, Hugging
Face hosts around 1.7 million models, and OpenCSG hosts around
200k models. Smaller or private repositories (e.g., enterprise model
registries) may exhibit different security characteristics.

6 Related Work
Evolution of Model Hosting Platforms and Pipelines. The evolution
from localized model development to centralized sharing platforms
constitutes a shift to collaborative ML practices. In the early stages,
researchers relied on manual distribution via institutional web-
sites or GitHub repositories, requiring end users to rebuild the
entire training and execution environment to reproduce results.
The first generation of organized model distribution are mainly
Caffe (2014) and TensorFlow Hub (2018). With PyTorch Hub created
in 2019, the torch.hub.load() interface was also released along
with the trust_repo parameter [58]. The rapid expansion of Hug-
ging Face between 2018 and 2023 further reshaped the landscape:
evolving from a simple hosting repository to a fully integrated plat-
form supporting training, inference, and deployment workflows. Yi
et al. [71] provides a comprehensive analysis of this ecosystem’s
development, showing how model hubs have become critical infras-
tructure sustaining millions of models and billions of downloads
worldwide. This infrastructural transformation is further quanti-
fied by Laufer et al. , by analyzing two million models hosted on
Hugging Face [34]. Their findings highlight the platform’s support
for over 4,000 distinct architectures, with an increasing proportion
of models depending on custom code to enable advanced function-
ality beyond standard implementations. Our work focuses on the

architectural design of executing code during model loading from
the hub.

Quality and security issues of Model Hubs. Jiang et al. [30] conducted
the first systematic study of these artifacts across eight platforms,
revealing that trust relationships in model ecosystems are more
implicit and poorly understood than in traditional software. Hu et
al. . [15] identifies open problems in the LLM supply chain, docu-
menting how fine-tuning workflows, adapter layers, and prompt
templates all serve as injection points. Yi et al. [71] further charac-
terizes these risks from an edge-computing perspective, showing
how LLM-integrated platforms create new trust boundaries among
cloud services, edge devices, and end users.

The introduction of weights_only=True in PyTorch 1.13 [59] and
the trust_remote_code flag in Transformers 4.0 [23] represent ac-
knowledgments of the risks, but adoption remains low due to com-
patibility concerns. Alternative serialization approaches exhibit
different trade-offs between security and functionality. SafeTensors,
introduced by Hugging Face in 2022 [26], uses a simple header-data
format that prevents code execution entirely. The format stores
tensors in a flat layout with minimal metadata, enabling zero-copy
loading while eliminating executable payloads. However, as our
results show and Laufer et al. . confirm [34], only 6.6% of models
have adopted this format despite platform encouragement. Recent
work on secure deserialization provides partial solutions.

While platform owners use scanners to identify vulnerable code
and data, Zhao et al. ’s deployment of MalHug [72] identified 91
malicious models and 9 dataset scripts actively exploiting users.
JFrog Security Research [29] documented evasion methods that
bypass pattern-based scanning, including time-delayed execution,
environment fingerprinting, and polymorphic code generation. The
August 2025 Protect AI report [55], based on scanning 4.47 million
model versions, identifies emerging threats, such as archive slip
vulnerabilities and TensorFlow-specific backdoors, that existing
toolsmiss. Ourwork specifically focuses on the code associatedwith
the model, which is executed during loading, and on developers’
concerns about it.

7 Conclusion
Our work provides the first large-scale, cross-platform empirical
analysis of remote code execution risks in MLmodel hosting ecosys-
tems, examining five major platforms. We identified that around
45,000 repositories execute arbitrary code during model loading.
Our static analysis evealed most repositories have weak defensive
coding practices, and injection and deserialization vulnerabilities
(e.g., CWE-502, CWE-95, CWE-78. We also found that most of the
malicious code in the category of environmental evasion indicators
(e.g., Qemu, VMWare, VBox detections). Although Hugging Face
has made significant advances with automated malware scanning
pipelines (e.g., ClamAV, PickleScan, Protect AI Guardian), these
mechanisms alone are insufficient. Other platforms lack compara-
ble safeguards, with minimal or no sandboxing and weak verifica-
tion mechanisms. Developer discussions further reveal widespread
confusion and misconceptions about trust flags, limited adoption of
secure serialization formats like SafeTensors, and tension between
usability and security.

10

https://caffe.berkeleyvision.org/

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] Anonymous. 2025. Replication Package: Untrusted Model Loading. https://

anonymous.4open.science/r/untrusted-model-loading-C8BC/README.md. Ac-
cessed: 2025-10-24.

[2] Gareth Bennett, Tracy Hall, Emily Winter, and Steve Counsell. 2024. Semgrep*:
Improving the limited performance of static application security testing (sast)
tools. In Proceedings of the 28th International Conference on Evaluation and As-
sessment in Software Engineering. 614–623.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
Advances in Neural Information Processing Systems 33 (2020), 1877–1901.

[4] Beatrice Casey, Kaia Damian, Andrew Cotaj, and Joanna Santos. 2025. An
Empirical Study of Safetensors’ Usage Trends and Developers’ Perceptions. arXiv
preprint arXiv:2501.02170 (2025).

[5] Beatrice Casey, Joanna Santos, and Mehdi Mirakhorli. 2024. A large-scale exploit
instrumentation study of AI/ML supply chain attacks in hugging face models.
arXiv preprint arXiv:2410.04490 (2024).

[6] Cisco. 2024. Foundation AI Advances AI Security With Hugging
Face. https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai-supply-
chain-security-with-hugging-face. Accessed: 2025-10-10.

[7] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Ed-
ucational and Psychological Measurement 20, 1 (1960), 37–46. doi:10.1177/
001316446002000104

[8] Juliet Corbin and Anselm Strauss. 1990. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications.

[9] EvalScope. 2024. FAQ. https://evalscope.readthedocs.io/en/v0.16.3/get_started/
faq.html. Accessed: 2025-10-10.

[10] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA.

[11] Mohammad Ghafari, Pascal Gadient, and Oscar Nierstrasz. 2017. Security smells
in android. In 2017 IEEE 17th international working conference on source code
analysis and manipulation (SCAM). IEEE, 121–130. doi:10.1109/SCAM.2017.24

[12] GitHub Security Lab. 2025. CodeQL Query Packs. https://securitylab.github.
com/tools/codeql/. Accessed: 2025-10-23.

[13] GitHub Security Lab. 2025. CodeQL: Semantic Code Analysis Engine. https:
//codeql.github.com. Query-based code analysis engine for discovering vulnera-
bilities. Accessed: October 2025.

[14] Damian Gnieciak and Tomasz Szandala. 2025. Large Language Models Versus
Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection.
arXiv:2508.04448 [cs.SE] https://arxiv.org/abs/2508.04448

[15] Zuxin Hu, Ning Liu, Tian Zhao, Fan Yang, Xiaowei Deng, Ting Du, Jian Chen,
Zongwei Li, and Xiaolong Fan. 2025. Large Language Model Supply Chain: Open
Problems from the Security Perspective. In Proceedings of the 32nd ACM Con-
ference on Computer and Communications Security. Association for Computing
Machinery. doi:10.1145/3713081.3731747

[16] Hugging Face. 2024. 2024 Security Feature Highlights. https://huggingface.co/
blog/2024-security-features. Accessed: 2025-10-10.

[17] Hugging Face. 2024. Hugging Face Partners with TruffleHog to Scan for Secrets.
https://huggingface.co/blog/trufflesecurity-partnership. Accessed: 2025-10-10.

[18] Hugging Face. 2024. Malware Scanning. https://huggingface.co/docs/hub/en/
security-malware. Accessed: 2025-10-10.

[19] Hugging Face. 2024. Organization Verification. https://discuss.huggingface.co/t/
organization-verification/17906. Accessed: 2025-10-10.

[20] Hugging Face. 2024. Pickle Scanning. https://huggingface.co/docs/hub/en/
security-pickle. Accessed: 2025-10-10.

[21] Hugging Face. 2024. Security. https://huggingface.co/docs/hub/en/security.
Accessed: 2025-10-10.

[22] Hugging Face. 2024. Security & Compliance. https://huggingface.co/docs/
microsoft-azure/en/security. Accessed: 2025-10-10.

[23] Hugging Face. 2025. Auto Classes. https://huggingface.co/docs/transformers/en/
model_doc/auto. Accessed: 2025-10-10.

[24] Hugging Face. 2025. Customizing models — Transformers Documentation.
https://huggingface.co/docs/transformers/en/custom_models Accessed: 2025-10-
13.

[25] Hugging Face. 2025. Hugging Face Model Hub. https://huggingface.co. Total
models: 1,699,968. Accessed: October 2025.

[26] Hugging Face. 2025. Safetensors Documentation. https://huggingface.co/docs/
safetensors/index. Accessed: 2025-10-10.

[27] Hugging Face. 2025. Secrets Scanning. https://huggingface.co/docs/hub/en/
security-secrets. Accessed: 2025-10-10.

[28] InQuest Labs. 2025. Awesome YARA: A Curated Repository of YARA Rule
Sources. https://github.com/InQuest/awesome-yara?tab=readme-ov-file#rules.

Accessed: 2025-10-23.
[29] JFrog Security Research. 2024. Examining Malicious Hugging Face ML Mod-

els with Silent Backdoors. https://jfrog.com/blog/data-scientists-targeted-by-
malicious-hugging-face-ml-models-with-silent-backdoor/. Accessed: 2025-10-
10.

[30] Shangqing Jiang, Nicholas Synovic, Chahat Sethi, Sandeep Indarapu, Parker
Hyatt, Marco Schorlemmer, George Thiruvathukal, and James C. Davis. 2022.
An Empirical Study of Artifacts and Security Risks in the Pre-trained Model
Supply Chain. In Proceedings of the 2022 ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses. Association for Computing
Machinery, 105–114. doi:10.1145/3560835.3564547

[31] Bjørnar Haugstad Jåtten, Simon Boye Jørgensen, Rasmus Petersen, and Raúl
Pardo. 2025. Scalable Thread-Safety Analysis of Java Classes with CodeQL.
arXiv:2509.02022 [cs.SE] https://arxiv.org/abs/2509.02022

[32] Andreas D. Kellas, Neophytos Christou, Wenxin Jiang, Penghui Li, Laurent
Simon, Yaniv David, Vasileios P. Kemerlis, James C. Davis, and Junfeng Yang.
2025. PickleBall: Secure Deserialization of Pickle-basedMachine LearningModels
(Extended Report). https://arxiv.org/abs/2508.15987. arXiv:2508.15987.

[33] Lukas Kree, René Helmke, and Eugen Winter. 2024. Using semgrep oss to find
owasp top 10 weaknesses in php applications: A case study. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 64–83.

[34] Benjamin Laufer, Hamidah Oderinwale, and Jon Kleinberg. 2025. Anatomy of a
Machine Learning Ecosystem: 2 Million Models on Hugging Face. arXiv (2025).
arXiv:2508.06811 [cs.SI] https://arxiv.org/abs/2508.06811 Accessed: 2025-10-10.

[35] Victor Alvarez Martín. 2014. YARA: The pattern matching swiss knife for mal-
ware researchers. https://virustotal.github.io/yara/. Accessed: 2025-10-23.

[36] MITRE Corporation. 2025. Common Weakness Enumeration (CWE). https:
//cwe.mitre.org. A community-developed list of common software and hardware
weakness types. Accessed: October 2025.

[37] ModelScope. 2024. ModelScope: Bring the Notion of Model-as-a-Service to Life.
https://github.com/modelscope/modelscope. Accessed: 2025-10-10.

[38] ModelScope. 2024. Phi-3-mini-128k-instruct. https://modelscope.cn/models/
LLM-Research/Phi-3-mini-128k-instruct. Accessed: 2025-10-10.

[39] ModelScope. 2024. Releases. https://github.com/modelscope/modelscope/
releases. Accessed: 2025-10-10.

[40] ModelScope. 2025. ModelScope Model Hub. https://modelscope.cn. Total models:
68,736. Accessed: October 2025.

[41] Nitin Naik, Paul Jenkins, Roger Cooke, Jonathan Gillett, and Yaochu Jin. 2020.
Evaluating automatically generated YARA rules and enhancing their effective-
ness. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
1146–1153.

[42] Nitin Naik, Paul Jenkins, Nick Savage, Longzhi Yang, Tossapon Boongoen,
Natthakan Iam-On, Kshirasagar Naik, and Jingping Song. 2021. Embedded
YARA rules: strengthening YARA rules utilising fuzzy hashing and fuzzy rules
for malware analysis. Complex & Intelligent Systems 7, 2 (2021), 687–702.

[43] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774.
[44] OpenCSG. 2024. csghub-server. https://github.com/OpenCSGs/csghub-server.

Accessed: 2025-10-10.
[45] OpenCSG. 2024. Information about the OpenCSG community. https://github.

com/OpenCSGs/community. Accessed: 2025-10-10.
[46] OpenCSG. 2024. OpenCSG Documentation Center. https://www.opencsg.com/

docs/en/. Accessed: 2025-10-10.
[47] OpenCSG. 2024. Uploading Codes. https://www.opencsg.com/docs/en/code/

upload_codes. Accessed: 2025-10-10.
[48] OpenCSG. 2025. OpenCSG Model Hub. https://opencsg.com. Total models:

192,556. Accessed: October 2025.
[49] OpenMMLab. 2024. Benchmark and Model Zoo - MMDetection’s documentation.

https://mmdetection.readthedocs.io/en/latest/model_zoo.html. Accessed: 2025-
10-10.

[50] OpenMMLab. 2024. Contribution Guide – MMDetection3D 1.4.0 documenta-
tion. https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.
html. Accessed: 2025-10-10.

[51] OpenMMLab. 2024. OpenMMLab Detection Toolbox and Benchmark. https:
//github.com/open-mmlab/mmdetection. Accessed: 2025-10-10.

[52] OpenMMLab. 2025. OpenMMLab Model Zoo. https://openmmlab.com. Total
models: 16. Accessed: October 2025.

[53] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. arXiv preprint
arXiv:2203.02155 (2022).

[54] José Pereira dos Reis, Fernando Brito e Abreu, Glauco de Figueiredo Carneiro,
and Craig Anslow. 2022. Code Smells Detection and Visualization: A Systematic
Literature Review. Archives of Computational Methods in Engineering 29, 1 (Jan.
2022), 47–94. doi:10.1007/s11831-021-09566-x

11

https://anonymous.4open.science/r/untrusted-model-loading-C8BC/README.md
https://anonymous.4open.science/r/untrusted-model-loading-C8BC/README.md
https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai-supply-chain-security-with-hugging-face
https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai-supply-chain-security-with-hugging-face
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://evalscope.readthedocs.io/en/v0.16.3/get_started/faq.html
https://evalscope.readthedocs.io/en/v0.16.3/get_started/faq.html
https://doi.org/10.1109/SCAM.2017.24
https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://codeql.github.com
https://codeql.github.com
https://arxiv.org/abs/2508.04448
https://arxiv.org/abs/2508.04448
https://doi.org/10.1145/3713081.3731747
https://huggingface.co/blog/2024-security-features
https://huggingface.co/blog/2024-security-features
https://huggingface.co/blog/trufflesecurity-partnership
https://huggingface.co/docs/hub/en/security-malware
https://huggingface.co/docs/hub/en/security-malware
https://discuss.huggingface.co/t/organization-verification/17906
https://discuss.huggingface.co/t/organization-verification/17906
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/hub/en/security
https://huggingface.co/docs/microsoft-azure/en/security
https://huggingface.co/docs/microsoft-azure/en/security
https://huggingface.co/docs/transformers/en/model_doc/auto
https://huggingface.co/docs/transformers/en/model_doc/auto
https://huggingface.co/docs/transformers/en/custom_models
https://huggingface.co
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/hub/en/security-secrets
https://huggingface.co/docs/hub/en/security-secrets
https://github.com/InQuest/awesome-yara?tab=readme-ov-file#rules
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://doi.org/10.1145/3560835.3564547
https://arxiv.org/abs/2509.02022
https://arxiv.org/abs/2509.02022
https://arxiv.org/abs/2508.15987
https://arxiv.org/abs/2508.06811
https://arxiv.org/abs/2508.06811
https://virustotal.github.io/yara/
https://cwe.mitre.org
https://cwe.mitre.org
https://github.com/modelscope/modelscope
https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct
https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct
https://github.com/modelscope/modelscope/releases
https://github.com/modelscope/modelscope/releases
https://modelscope.cn
https://github.com/OpenCSGs/csghub-server
https://github.com/OpenCSGs/community
https://github.com/OpenCSGs/community
https://www.opencsg.com/docs/en/
https://www.opencsg.com/docs/en/
https://www.opencsg.com/docs/en/code/upload_codes
https://www.opencsg.com/docs/en/code/upload_codes
https://opencsg.com
https://mmdetection.readthedocs.io/en/latest/model_zoo.html
https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.html
https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.html
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://openmmlab.com
https://doi.org/10.1007/s11831-021-09566-x

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[55] Protect AI. 2025. 4M Models Scanned: Hugging Face + Protect AI Partnership
Update. https://protectai.com/blog/hugging-face-protect-ai-six-months-in. Ac-
cessed: 2025-10-10.

[56] PyCQA. 2025. Bandit: Security Linter for Python Source Code. https://bandit.
readthedocs.io. Static analysis tool for detecting common security issues in
Python code. Accessed: October 2025.

[57] PyTorch. 2024. Security Policy - pytorch/pytorch. https://github.com/pytorch/
pytorch/security. Accessed: 2025-10-10.

[58] PyTorch. 2024. torch.hub – PyTorch 2.8 documentation. https://pytorch.org/
docs/stable/hub.html. Accessed: 2025-10-10.

[59] PyTorch. 2024. torch.load(..., weights_only=True) currently raises a warning.
https://github.com/pytorch/pytorch/issues/52181. Accessed: 2025-10-10.

[60] PyTorch. 2025. torch.hub — PyTorch Documentation. https://docs.pytorch.org/
docs/stable/hub.html Accessed: 2025-10-13.

[61] PyTorch Contributors. 2025. pytorch/pytorch: Tensors and Dynamic neural
networks in Python with strong GPU acceleration. https://github.com/pytorch/
pytorch. Accessed: 2025-10-21.

[62] r2c. 2025. Semgrep: Lightweight Static Analysis for Modern Languages. https://
semgrep.dev. Open-source static analysis tool supporting pattern-based security
and compliance checks. Accessed: October 2025.

[63] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The Seven Sins: Security
Smells in Infrastructure as Code Scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 164–175.
doi:10.1109/ICSE.2019.00033

[64] Md Rayhanur Rahman, Akond Rahman, and Laurie Williams. 2019. Share, But
be Aware: Security Smells in Python Gists. In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 536–540. doi:10.1109/ICSME.
2019.00087

[65] Mohammed Latif Siddiq, Shafayat Hossain Majumder, Maisha Rahman Mim,
Sourov Jajodia, and Joanna C.S. Santos. 2022. An Empirical Study of Code
Smells in Transformer-based Code Generation Techniques. In 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation
(SCAM).

[66] Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. SecurityEval Dataset:
Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Gen-
eration Techniques. In Proceedings of the 1st International Workshop on Min-
ing Software Repositories Applications for Privacy and Security (Singapore, Sin-
gapore). Association for Computing Machinery, New York, NY, USA, 29–33.
doi:10.1145/3549035.3561184

[67] Mohammed Latif Siddiq, Joanna C. S. Santos, Sajith Devareddy, and Anna Muller.
[n. d.]. SALLM: Security Assessment of Generated Code. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW ’24) (Sacramento, CA, USA) (ASEW ’24). 12 pages. doi:10.1145/
3691621.3694934

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[69] VirusTotal. 2025. YARA: Pattern Matching Swiss Knife for Malware Re-
searchers. https://github.com/virustotal/yara?tab=readme-ov-file#additional-
resources. Accessed: 2025-10-23.

[70] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Lin-
guistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-demos.6

[71] Wenxin Yi, Dinh Phung Luu, Kangyu Ma, Jiayi Wang, Xiaowei Deng, Ruoxi Fu,
Jiajing Chen, Zongwei Li, Wenxuan Yu, Yue Wang, Philip Khang, Fan Yang, Yue
Zhang, and Yuanyuan Fang. 2024. Characterizing and Understanding the Risks
of Large Language Model-Integrated Platforms: A Supply-Chain Perspective
on the Security of Edge LLM Systems. arXiv (2024). arXiv:2409.09368 [cs.CR]
https://arxiv.org/abs/2409.09368 arXiv:2409.09368v1.

[72] Jian Zhao, Shenao Wang, Yanjie Zhao, Xinyi Hou, Kailong Wang, Peiming Gao,
Yuanchao Zhang, ChenWei, and HaoyuWang. 2024. Models Are Codes: Towards
Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Sacramento, CA, USA) (ASE ’24). Association for Computing
Machinery, New York, NY, USA, 2087–2098. doi:10.1145/3691620.3695271

12

https://protectai.com/blog/hugging-face-protect-ai-six-months-in
https://bandit.readthedocs.io
https://bandit.readthedocs.io
https://github.com/pytorch/pytorch/security
https://github.com/pytorch/pytorch/security
https://pytorch.org/docs/stable/hub.html
https://pytorch.org/docs/stable/hub.html
https://github.com/pytorch/pytorch/issues/52181
https://docs.pytorch.org/docs/stable/hub.html
https://docs.pytorch.org/docs/stable/hub.html
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://semgrep.dev
https://semgrep.dev
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934
https://github.com/virustotal/yara?tab=readme-ov-file#additional-resources
https://github.com/virustotal/yara?tab=readme-ov-file#additional-resources
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2409.09368
https://arxiv.org/abs/2409.09368
https://doi.org/10.1145/3691620.3695271

	Abstract
	1 Introduction
	2 Background
	2.1 Model Loading with Executable Code
	2.2 Code Smells & Security Smells
	2.3 Threat Model

	3 Methodology
	3.1 Research Questions (RQs)
	3.2 Platform Selection
	3.3 Model Repositories Selection
	3.4 Security Smell, Vulnerability, and Malicious Payload Analysis
	3.5 Platform Mitigation
	3.6 Developers’ Concerns

	4 Results
	4.1 RQ1: Prevalence of Custom Models
	4.2 RQ2: Security Analysis
	4.3 RQ3: Platform Mitigation Strategies
	4.4 RQ4: Developers' Concern

	5 Discussion
	5.1 Ecosystem-wide Security Exposure
	5.2 Gaps Between Security Mechanisms and Developer Practices
	5.3 Results Implications
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

