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An Empirical Study on Remote Code Execution in Machine
Learning Model Hosting Ecosystems

Anonymous Author(s)
Abstract
Model-sharing platforms (e.g., Hugging Face) have become cen-
tral to modern ML development, enabling easy sharing and reuse
of pre-trained models. However, this flexibility introduces serious
risks, as models may execute untrusted code during loading (e.g.,
via trust_remote_code). This paper presents the first large-scale
empirical study of custommodel-loading practices across five major
platforms, examining their prevalence, risks, and developer per-
ceptions. We quantify how often models rely on custom code and
identify those executing arbitrary Python files. Using Bandit, Cod-
eQL, and Semgrep, we detect security smells and categorize findings
by CWE identifiers, complemented by YARA-based malware sig-
nature scans. We further analyze each platform’s documentation,
APIs, and safeguards, and qualitatively study over 600 community
discussions. Our results reveal widespread unsafe defaults, incon-
sistent security enforcement, and pervasive developer confusion
about the risks of remote code execution.

CCS Concepts
• Security and privacy → Systems security; Software secu-
rity engineering; • Software and its engineering→ Software
infrastructure.
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1 Introduction
Large Language Models (LLMs) have been increasingly used in
day-to-day conversation and assisting tasks [3, 43, 53]. These mod-
els are based on different transformer architectures [68]and their
advancements. These have enabled the creation of models with
unprecedented scale, often comprising billions or even trillions of
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parameters [43]. Models are continuously reused, re-tuned, and
evaluated for new tasks. Model hubs (or model registries) like
Hugging Face play a critical role in this ecosystem by providing
a centralized platform for hosting and sharing pre-trained models
and datasets [72]. As of October 2025, Hugging Face alone hosts
around 1.7 million models, fostering an open and collaborative
environment for developers and researchers worldwide.

Whilemodel hubs and their supporting libraries (e.g., transformers
[70] and PyTorch [61]), enable the seamless distribution of model
weights, some models inherently require code execution to function
correctly [24]. Early neural network architectures relied on stan-
dardized, composable layers that could be fully described through
configuration files. In contrast, current LLMs often introduce non-
standard architectural components (e.g., custom attention mecha-
nisms, domain-specific preprocessing steps, and hardware-aware
optimizations) that cannot be easily serialized without accompany-
ing executable code [71]. For example, when researchers develop a
new transformer variant with a novel positional encoding scheme,
theymust distribute not only the trainedweights but also the accom-
panying Python code that specifies how those weights are applied
during inference. Without this code, downstream users would need
to manually re-implement the architecture, making model sharing
inefficient and, in many cases, impractical [15].

Allowing code to run during model loading increases flexibility but
also introduces security risks [72]. One security issue arises from
unsafe serialization formats such as Python’s pickle, which can
execute arbitrary code during deserialization via the __reduce__
method—turning model files into potential attack payloads [4, 32].
Prior work has shown that malicious pickle-based models in the
wild have been used to deploy reverse shells and steal credentials [5,
72]. Another distinct security problem comes from custom remote
code execution, enabled when users load models with flags such
as trust_remote_code=True. This allows arbitrary Python modules
provided by model authors to run locally, extending the attack
surface beyond serialized data to unverified source code.

Consequently, loading models from public hubs creates implicit
trust relationships among users, model authors, and platforms (a
trust that is often misplaced [30]). While previous work has exam-
ined deserialization attacks [20, 20], the prevalence and risks of
custom remote code execution during model loading remain
largely unexplored. Therefore, this paper closes this gap through
a large-scale empirical study across five major model-sharing plat-
forms (Hugging Face [25], OpenCSG [48], ModelScope [40], Open-
MMLab [52], and PyTorch Hub [61]). We first quantify how often
models rely on custom loading code and identify those that exe-
cute arbitrary Python files. We then apply multiple static analysis
tools (Bandit, CodeQL, and Semgrep) to detect potential vulner-
abilities and categorize them by CWE identifiers. In parallel, we
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analyze each platform’s documentation, APIs, and security con-
trols to assess mitigation practices, nd qualitatively examine over
600 developer discussions from GitHub, Hugging Face, PyTorch
Hub, and Stack Overflow to capture community perceptions and
misconceptions about security and usability.

The contributions of this work1 are:

• The first cross-platform, large-scale measurement study of un-
trusted model code execution across five major model-sharing
platforms: Hugging Face [25], ModelScope [40], OpenCSG [48],
OpenMMLab [52], and PyTorch Hub [61].

• We systematically detect and categorize security weaknesses
using three static analyzers in around 45,000 repositories con-
taining custom code. Moreover, we incorporate signature-based
malicious pattern detection using YARA [35] to identify potential
payloads.

• We analyze platform-level defenses, including warning systems,
static and dynamic scanning, and trust flag mechanisms.

• We create a taxonomy about developers’ perception about remote
code execution during model loading after examining around 600
developer discussions from forums, GitHub issues, pull requests,
and Q&A sites.

2 Background
2.1 Model Loading with Executable Code
Unlike traditional data files, modern ML models may require code
execution for technical reasons. Early neural networks consisted
of standardized layers that could be described solely by configura-
tion, but contemporary architectures implement novel mechanisms
(e.g., custom attention patterns, domain-specific preprocessing, etc.)
that cannot be expressed without executable code [71]. Thus, when
developers implement a new transformer variant with unique posi-
tional encoding, they must ship both the trained weights and the
Python code defining how those weights interact. The alternative
would require every user to manually reconstruct the architecture,
making large-scale model sharing impractical [15].

This technical needmanifests through platformAPIs that are simple
to use. When developers call from_pretrained or pipelinemethods,
the transformers library downloads multiple files, including Python
modules that execute with full system privileges when remote
code trust flags are enabled. Whenever the repository contains spe-
cific entry-point files, such as modeling_*.py, tokenizer.py, or
hubconf.py, they are automatically imported and executed as part
of the model initialization process. While these files often contain
legitimate code that defines how the model operates, an attacker
can embed malicious payloads in them that would execute with
the same privileges as any other local Python process. This means
that enabling trust_remote_code (for transformers) or trust_repo
(for PyTorch Hub) effectively grants remote repositories the ability
to run arbitrary Python code on the host machine. Platforms like
Hugging Face host over 1.7 million models, with thousands added
daily, making manual review impractical and automated scanning
insufficient [34].
1This study’s replication package is available at [1].

To illustrate, Figure 1 shows how model loading can trigger code
execution. On the left, a developer defines a custom configuration
class (DeepseekV3Config) that extends the transformers library’s
base configuration. This file, stored in the model repository, con-
tains Python code that can be executed when the model is loaded.
On the right, a user loads this same model from Hugging Face using
the pipeline API and sets trust_remote_code=True. This flag tells
the library to trust and run any Python code provided by the re-
mote repository, effectively downloading and executing unverified
scripts from the internet.

1. from transformers.configuration_utils import 
PretrainedConfig

2. from transformers.utils import logging
3.
4. logger = logging.get_logger(__name__)
5.
6. DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7.
8. class DeepseekV3Config(PretrainedConfig):
9.     ...

DeepSeek-R1/configuration_deepseek.py
1. from transformers import pipeline
2.
3. pipe = pipeline("text-generation", 
4.          model="deepseek-ai/DeepSeek-R1", 
5.          trust_remote_code=True)
6. messages = [
7.     {"role": "user", 
8.     "content": "Who are you?"}
9. ]
10. pipe(messages)

inference.py

v1-Model Serialization/Deserialization Example

Figure 1: Example of a custom configuration script (left) and
loading a custom model (right).

This customization mechanism introduces a serious security risk:
an attacker can upload a model repository containingmalicious
code to deliver payloads like reverse shells, keyloggers, or data exfil-
tration scripts [72]. Since the customization code executes automat-
ically during model loading, users who enable trust_remote_code

may unknowingly grant full system access to untrusted code. This
behavior makes large-scale model sharing both powerful and poten-
tially dangerous, especially when combined with the high volume
of new models uploaded daily.

2.2 Code Smells & Security Smells
Code smells are indicators of poor design or implementation choices
that may not immediately cause failures but often lead to main-
tainability issues and increased defect risk [10, 54]. They typically
reflect violations of good design principles, making software harder
to evolve and more error-prone.

A specific subset of code smells, called security smells, is associ-
ated with patterns that may introduce or signal the presence of
vulnerabilities [11, 63, 64]. These patterns do not always constitute
exploitable vulnerabilities but highlight code areas where security
controls are weak or outdated.

2.3 Threat Model
Custom model loading introduces complex trust boundaries among
three main stakeholders: model creators, platform maintainers, and
model consumers. Figure 2 provides an overview of our threat model,
which examines how these boundaries can be exploited when plat-
forms allow arbitrary code execution during model loading.

Adversary Assumptions. We assume that attackers have accounts on
model platforms and can upload models or modify existing reposi-
tories. Adversaries may also leverage community features, such as
discussions or pull requests, to disseminate or promote malicious
content. We consider two adversary types: (1) a malicious developer
who intentionally uploads a model with harmful customization

2
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Figure 2: Threat model overview

code, and (2) a compromised maintainer whose credentials or to-
kens were hijacked to distribute poisoned models under the guise of
a reputable author. Importantly, not all threats arise from deliberate
attacks. Model contributors who are unaware of secure publishing
practices may unintentionally introduce insecure code, effectively
expanding the threat surface without adversarial intent.

Threat Scenarios. Three threat scenarios exist (S1–S3):

S1 Malicious Fork. An attacker downloads an existing benign
model 𝑀 , changes the custom code with a harmful payload
(e.g., reverse shell), and uploads a modified model𝑀 ′ to their
own (rogue) repository while presenting it as an enhanced or
compatible version of the original. Model consumers would
need to set trust_remote_code=True to be able to use the
model, which would lead to the execution of the malicious
payload.

S2 Compromised Trusted Account. A trusted maintainer ac-
count is hijacked, allowing the attacker to upload a modified
model𝑀 ′ with malicious accompanying custom code directly
to a legitimate, widely used repository. Consumers may trust
the model due to its reputation, verified badges, or high down-
load counts. Similar to Scenario 1, attackers can embed arbi-
trary Python logic in initialization files or leverage dependency
manipulation. Social engineering and trust hijacking further in-
crease the likelihood of exploitation, as users are more inclined
to enable trust_remote_code=True for “trusted” sources.

S3 Attacker-in-the-middle (AiTM). An attacker intercepts or
tampers with the model distribution channel and modifies the
model’s custom code during transfer or dependency resolution
(e.g., via compromised mirrors, registries, or proxy layers). This
can also occur indirectly through poisoning or replacing cached
artifacts stored by hosting platforms (e.g., Hugging Face cache
directories), allowing the attacker’s modified version to be
loaded even if the original upstream repository remains clean.
As a result, when users enable trust_remote_code=True, they
may execute the injected payload from the cached or inter-
cepted model, effectively transforming a previously benign ar-
tifact into a malicious one. Attackers may exploit dependencies
and supply-chain manipulation, injecting malicious payloads at
download or cache resolution time. Since the model is cached
locally, future loads may execute the attacker’s payload even
without further network interaction.

Not all risks stem from malicious actors. Model creators with lim-
ited security awareness may unintentionally include unsafe ini-
tialization code, hard-coded credentials, or insecure dependency
calls. Although unintentional, such models can still be weaponized
post-deployment, expanding the platform’s overall attack surface
without deliberate adversarial behavior. Weak sandboxing, overly
permissive dependencies, and a lack of static or runtime checks al-
low insecure code to run automatically during model loading, mak-
ing these models soft targets for downstream exploitation.

Trust Relationships. Model consumers implicitly trust platform in-
terfaces and configuration defaults (e.g., trust_remote_code=True
or trust_repo=True) to safely retrieve and execute model code.
This trust is often amplified by perceived platform reputation or
download counts, whichmay lead users to overlookwarning prompts
or disable security mechanisms for convenience. Platform main-
tainers, in turn, trust model contributors to follow safe publishing
practices, while contributors depend on the platform to enforce
isolation and verification mechanisms. The intersection of these
assumptions creates a vulnerable trust boundary.

3 Methodology
3.1 Research Questions (RQs)
As shown in Figure 3, we answer four RQs that explore the preva-
lence, risks, and developers’ perceptions of custom model loading
across model hubs.

RQ1: To what extent is custom model loading required?

Model-sharing platforms, such as Hugging Face and ModelScope,
enable developers to provide custom code for loading or configuring
models. While these capabilities increase flexibility and support
novel architectures, they also introduce security risks within the
ecosystem. In this RQ, we investigate how many models hosted on
these platforms include custom code that is required to be executed
upon model loading.

RQ2: Do remote code implementations for custom mod-
els contain vulnerabilities, security smells, or malicious
payloads?

Allowing arbitrary code execution raises concerns about the intro-
duction of vulnerabilities and insecure practices. Previous work has
shown that code provided by the community may contain security
smells, such as unsafe deserialization [4, 5, 72]. In this RQ, we per-
form a systematic analysis of the models’ customization code to
determine the prevalence of vulnerabilities and potential exploit
vectors.

RQ3: What do the platforms offer for developers to miti-
gate the execution during model loading?

Platform hubs play a crucial role in enforcing safe defaults, pro-
viding comprehensive documentation, and implementing technical
safeguards (e.g., sandboxing, warning banners, or permission sys-
tems). In this RQ, we investigate the existing security mechanisms
provided by various platforms. We examine whether platforms pro-
vide static or dynamic checks, whether they expose developers and
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end-users to explicit warnings when running custom code, and
how policies such as trust_remote_code or trust_repo flags or
isolated execution environments are enforced in practice.

RQ4: What are the developers’ concerns around code exe-
cution during model loading?

Beyond technical vulnerabilities, it is crucial to understand the
perspective of developers who contribute to and use these models.
Their concerns may range from usability (e.g., friction in using
security mechanisms) to trustworthiness (e.g., fear of executing
malicious code) and maintainability (e.g., lack of long-term platform
support for their contributions). In this RQ, we collect and analyze
developer discussions from Hugging Face and PyTorch Hub forums,
GitHub discussions, pull requests, issues, and StackOverflow Q&A
platforms to understand practitioners’ concerns, misconceptions,
and expectations.
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model repositories
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model repositories
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Documentation Review &
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Figure 3: Methodology Overview

3.2 Platform Selection
We first examined a recent list of popular model-sharing platforms
compiled by Jian et al. [72], which identified the top 15 model
hubs. We then applied the following inclusion criteria to determine
whether a given model hub (henceforth referred to as a “platform”)
qualified for our study. A platform was included only if it satisfied
all of the following conditions: (1) it is publicly accessible; (2) it
provides practical means to retrieve information from all hosted
model repositories (e.g., through APIs or web crawling); (3) the
hosted models can be programmatically fetched and instantiated
through standard model-loading APIs provided by transformers,
torch.hub, or their respective wrappers, without requiring any
reimplementation; and (4) it supports libraries or mechanisms that
permit the execution of custom code during model loading. After
this manual analysis, we identified 5 platforms for inclusion in
our study: Hugging Face [25], OpenCSG [48], ModelScope [40],
OpenMMLab [52], and PyTorch Hub [61].

3.3 Model Repositories Selection
After selecting the platforms, we collected metadata for all model
repositories published within these platforms. Specifically, we cap-
tured the repository’s access URLs, tags, and file list. Next, we

applied the following inclusion criteria to identify model reposito-
ries that require custom code execution during model loading. A
repository was included if it satisfied any of the following criteria:
(i) it was tagged with the custom_code tag; or (ii) it contained
one of the files tokenizer.py, __init__.py, or hubconf.py; or
(iii) it included a Python file whose name began with modeling_,
tokenization_, or configuration_. These conditions are based
on the documentation of the Pytorch Hub [60] and the transformers
library [24]. The OpenMMLab platform, on the other hand, has its
own library for loading custom models. Therefore, we included all
the repositories listed on this platform in our analysis.

3.4 Security Smell, Vulnerability, and Malicious
Payload Analysis

After collecting the models, we used three static analyzers to iden-
tify security smells and potential vulnerabilities: Bandit [56], Cod-
eQL [13], and Semgrep [62]. To further identify malicious patterns
and payload signatures, we employed YARA [35]. These tools pro-
vide complementary coverage, combining lightweight static analy-
sis with signature-based detection of malicious code.

Bandit (v1.8.6). It is a security linter that statically inspects the ab-
stract syntax tree (AST) of Python code to detect common vulnera-
bilities such as the use of unsafe functions (eval, exec, pickle.load),
weak cryptographic algorithms, hardcoded credentials, and inse-
cure temporary file creation. It also maps findings to Common
Weakness Enumeration (CWE), which is a list of common types of
software vulnerabilities [36]. We executed Bandit recursively on
all Python files extracted from each model repository, generating
structured JSON outputs for aggregation and comparison.

CodeQL (v2.15.0). It performs static analysis by compiling source
code into a relational database of program elements (e.g., functions,
variables, control flow, and data flow) and executing declarative QL
queries to detect security flaws. It enables inter-procedural and data-
flow analysis for complex vulnerabilities such as injection, path tra-
versal, and insecure deserialization. We executed CodeQL with the
official query pack provided by GitHub Security Lab [12].

Semgrep (v1.139.0). It is a lightweight, multi-language static ana-
lyzer that uses rule-based pattern matching to detect both general
and domain-specific security issues. Unlike CodeQL, which requires
query compilation, Semgrep matches syntactic and semantic pat-
terns directly in the codebase, making it efficient for large-scale
scanning. We used its built-in rulesets to identify security miscon-
figurations, unsafe API usage, and insecure imports across various
model repositories. Findings were grouped by CWE and severity
level to facilitate cross-tool comparison.

YARA (v4.5.2). It is a rule-based pattern-matching engine widely
used in malware detection and digital forensics [41, 42]. Unlike
the previous static analyzers, which focus on identifying insecure
coding patterns or API misuse, YARA detects known malicious
behaviors through signature-based matching of strings, byte se-
quences, and regular expressions. This approach allows it to un-
cover embedded payloads that may not manifest as conventional
security smells—for example, reverse shells, obfuscated network
beacons, or credential-stealing scripts. The official YARA GitHub
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repository [69] provides a reference to a curated list of well-known
rule sources [28]. From these 70 publicly available sources, we suc-
cessfully compiled 7,657 rules from 25 sources to scan the collected
repositories (they failed to compile rules due to them being outdated
with respect to the version we have used in our work).

3.5 Platform Mitigation
To answer RQ3, we systematically examined each platform to iden-
tify mechanismsmitigating unsafe model loading.We first reviewed
official documentation and API references to understand declared
security policies for custom code execution. We then analyzed open-
source repositories (if available) to verify enforcement of safety
configurations such as trust_remote_code or trust_repo. From
these sources, we identified their used safeguards (e.g., static and
dynamic checks, warning prompts, sandboxed execution, etc.) and
compared them across platforms to evaluate consistency, enforce-
ment, and gaps.

3.6 Developers’ Concerns
To answer our RQ4, we focused on the Hugging Face and PyTorch
Hub forums, GitHub discussions, pull requests, issues, and the Stack
Overflow Q&A platform. We searched these platforms using the
keywords trust_remote_code and trust_repo. We identified a
total of 418 Hugging Face forum posts, 354 GitHub discussion
posts, and 289 Stack Overflow posts. For GitHub issues, there were
more than 13,000 retrieved issues, and for GitHub pull requests,
more than 4,000 PRs, using the aforementioned query. Thus, we
kept only issues and PRs that included any of the search query
keywords in their titles. Then, two authors manually filter them
in parallel to include them in our study based on their relevance.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement between the two authors [7]. A senior author with over
10 years of experience resolved the discrepancies.

After manually filtering for relevance to our study, we retained 27
GitHub discussions, 222 GitHub issues, 297 GitHub pull requests, 27
Stack Overflow posts, and 39 Hugging Face discussions. An entry
was deemed as relevant if it explicitly discussed the functional-
ity, security implications, integration issues, maintenance actions,
or community understanding related to trust_remote_code or
trust_repo, rather than merely mentioning the keyword in a code
snippet as shown in the example in Listing 1. It is important to
note that although we collected 23 discussions from PyTorch Hub’s
forums, none of them were relevant to our study.

We then applied an open coding approach to the selected posts [8],
carefully reading, analyzing, and annotating each post with con-
ceptual labels (codes) reflecting developers’ expressed sentiments,
challenges, and misunderstandings. The coding was conducted
collaboratively by the authors, whose software development expe-
rience ranged from 4 to 12 years. To ensure consistency, disagree-
ments were discussed in weekly calibration meetings. If there was a
discrepancy, the senior author mitigated it. We iteratively reviewed
and refined the codes through regular calibration meetings until
conceptual saturation was achieved.

4 Results
4.1 RQ1: Prevalence of Custom Models
Table 1 provides a summary of the collected model repositories
containing custom code. For Hugging Face, OpenCSG, and Mod-
elScope, approximately 2% to 4% of the models include custom
code. In contrast, for OpenMMLab and PyTorch Hub, all available
repositories rely on custom code.

Table 1: Result of collected repositories with custom codes.

Platform # Repos # Repos with
custom code (%) Supported Libs.

Hugging Face 1,699,968 35,953 2.11% transformers
OpenCSG 192,556 6165 3.20% transformers
ModelScope 68,736 3193 4.65% PyTorch & transformers
OpenMMLab 16 16 100.00% MMengine & PyTorch
PyTorch Hub 26 26 100.00% PyTorch

Figure 4 depicts the top 10 tag distributions of custommodels across
Hugging Face, ModelScope, OpenCSG, OpenMMLab, and PyTorch
Hub platforms. For Hugging Face, the majority of custom models
are used for text generation (66.5%), followed by feature extraction
(approximately 10%). In contrast, for OpenCSG, around 21.8% of the
custommodels are used for text generation, while roughly 15.1% are
associated with speech-related tasks. Finally, for ModelScope, the
distribution indicates that most custom models are concentrated
in scientific and domain-specific applications, reflecting its distinct
usage patterns compared to the other two platforms. For PyTorch
Hub, most models focus on vision, speech, and audio tasks, whereas
in OpenMM Lab, model repositories mainly contain custom models
for object detection and other vision tasks.

4.2 RQ2: Security Analysis
Bandit Results. Table 2 presents the distribution of vulnerability
types (CWE IDs) and the top Bandit issues by severity across five
major model-sharing platforms. Across all platforms, CWE-703
(Improper Check or Handling of Exceptional Conditions) is
by far the most common weakness, especially on Hugging Face
(78%) and ModelScope (80.95%), indicating that model repositories
frequently include weak or missing exception handling logic. This
pattern is associated with the Bandit low-severity rule B101 (assert
statements), which alone accounts for 60–80% of all detected issues
on most platforms. While these may not directly expose models
to immediate exploits, they represent fragile or insecure coding
practices that can lead to reliability and maintainability problems.

For Hugging Face, out of 35,953 repositories with custom codes,
3,743 (10.41%) exhibited at least one security smell. In addition to
CWE-703, CWE-494 (Download of Code Without Integrity Check)
and CWE-259 (Use of Hard-coded Password) were common. For
OpenCSG, despite a relatively modest “smelly” repository rate of
2.34%, the absolute number of issues is the highest among all plat-
forms. Unsafe downloads (B615, 15.11%) and unsafe PyTorch loads
(B614, 5.81%) were particularly common. ModelScope shows the
lowest proportion of affected repositories (0.33%), yet a similar
CWE profile dominated by CWE-703 and CWE-259. The high preva-
lence of B101 issues indicates poor exception-handling practices.
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Figure 4: Tag distributions of the custom models across different platforms.

Table 2: Top 3 CWE and top 1 Bandit issue per severity across platforms.

Platform # Repos Analyzed # Smelly Repo (%) Top 3 CWEs Top 1 Issue per Severity (H, M, L)
Hugging Face 35,953 3,743 (10.41%) CWE-703 (Exception Handling): 160,967 (78.09%)

CWE-494 (No Integrity Check): 19,840 (9.62%)
CWE-259 (Hard-coded Password): 13,919 (6.75%)

H1. B605 – Starting a process with a shell. (394; 0.19%)
M1. B615 – Unsafe Hugging Face Hub download. (17,042; 8.01%)
L1. B101 – Use of assert detected. (157,788; 74.18%)

OpenCSG 192,556 4,503 (2.34%) CWE-703 (Exception Handling): 40,433 (64.55%)
CWE-494 (No Integrity Check): 13,298 (21.23%)
CWE-502 (Unsafe Deserialization): 4,426 (7.07%)

H1. B605 – Starting a process with a shell. (221; 0.34%)
M1. B615 – Unsafe Hugging Face Hub download. (9,957; 15.11%)
L1. B101 – Use of assert detected. (39,717; 60.28%)

ModelScope 68,736 229 (0.33%) CWE-703 (Exception Handling): 20,490 (80.95%)
CWE-259 (Hard-coded Password): 2,584 (10.21%)
CWE-494 (No Integrity Check): 1,455 (5.75%)

H1. B605 – Starting a process with a shell. (22; 0.09%)
M1. B615 – Unsafe Hugging Face Hub download. (1,278; 4.95%)
L1. B101 – Use of assert detected. (20,169; 78.17%)

OpenMMLab 16 12 (75.00%) CWE-703 (Exception Handling): 848 (86.44%)
CWE-259 (Hard-coded Password): 124 (12.64%)
CWE-502 (Unsafe Deserialization): 6 (0.61%)

H1. B301 – pickle used to deserialize untrusted data. (4; 0.41%)
L1. B101 – Use of assert detected. (848; 86.44%)

PyTorch Hub 26 12 (46.15%) CWE-78 (OS Command Injection): 42 (35.90%)
CWE-703 (Exception Handling): 40 (34.19%)
CWE-502 (Unsafe Deserialization): 20 (17.09%)

H1. B605 – Starting a process with a shell. (2; 7.69%)
M1. B301 – pickle used to deserialize untrusted data. (1; 3.85%)
L1. B101 – Use of assert detected. (34; 30.77%)

Although the total number of repositories is small (16) for Open-
MMLab, 75% of them contained security smells. For this platform,
CWE-703 accounted for 86.44% of issues, and unsafe deserializa-
tion (B301) and eval usage (B307) were notable medium-severity
findings. For PyTorch Hub, nearly half of the repositories (46.15%)
contained security issues. Unlike other platforms, CWE-78 (OS
Command Injection) was the most common weakness, reflecting
the frequent use of shell commands and eval functions. This con-
firms that this platform is particularly susceptible to remote code
execution risks.

Semgrep Results. Table 3 summarizes the distribution of vulnerabil-
ity types (CWE IDs), top OWASP categories, and the most frequent
Semgrep rule violations across major model-sharing platforms. Un-
like Bandit’s results, which primarily had lower-severity coding
smells, the Semgrep analysis reveals a clear concentration of security-
critical issues, more specifically related to unsafe deserialization,
code injection, and integrity failures. Across all platforms, CWE-
502 (Deserialization of Untrusted Data) is the most common
weakness, consistently appearing in 50–80% of the flagged reposi-
tories. Additionally, CWE-95 (Eval Injection), CWE-676 (Use of Po-
tentially Dangerous Function), and CWE-706 (Improper Handling
of Variadic Functions) appear across platforms. The top OWASP
categories identified through Semgrep closely align with injection-
based threats. Injection vulnerabilities dominate onmost platforms
(e.g., 54.6% on Hugging Face and 67.9% on PyTorch Hub), followed
by Insecure Deserialization and Integrity Failures.

Hugging Face had 8.65% of its repositories affected, with more
particularly CWE-502 and CWE-95. A small proportion (0.02%) of
repos from OpenCSG showed issues, with CWE-502 dominating
(82.76%). ModelScope shows a similar low impact (0.05%), but CWE-
502 is still dominant (62.5%). The presence of CWE-22 and CWE-
502 highlights insecure file operations and deserialization risks.
For PyTorch Hub, there is a highest relative impact (53.85%), with
CWE-502 and CWE-95 dominating.

CodeQL Results. Table 4 shows the distribution of CWE IDs and
the most frequent CodeQL rule violations among Hugging Face,
OpenCSG, andModelScope as it did not find any issues in OpenMM-
Lab and PyTorch Hub. Across all platforms, CWE-117 (Improper
Output Neutralization for Logs) and CWE-020 (Improper In-
put Validation) are the most common issues. Additional findings
include CWE-079 (Cross-site Scripting), CWE-209 (Information
Exposure Through an Error Message), and CWE-022 (Path Traver-
sal) are also frequent. Most issues detected by CodeQL are under
the “Timing attack against secret” query, accounting for more
than 90% of all detections across platforms. This pattern indicates
that many repositories rely on non-constant-time cryptographic
comparisons, which are vulnerable to side-channel attacks.

About 5.87% of repositories were flagged with CodeQL alerts for
Hugging Face. CWE-117 accounted for over half of all detected
weaknesses (53.49%), showing poor log sanitization practices. Al-
though the absolute number of flagged repositories is low (32) for
OpenCSG, CWE-215 (Information Exposure Through Debug Infor-
mation) and CWE-730 (OWASP Top Ten 2004 Category A9) stand
out. A small proportion of repositories (0.25%) from ModelScope
contain CWE-020 (78.26%), CWE-116 (Improper Encoding or Escap-
ing), and CWE-079. Timing-attack patterns again dominate (98.75%),
often coupled with weak cryptographic configuration.

YARA Results. Table 5 presents the distribution of YARA signature
matches across the model-sharing platforms. The results reveal that
while malware-related signatures are concentrated in a relatively
small fraction of repositories, and across all platforms, the most
frequently triggered YARA signatures belong to the category of
environmental evasion indicators (e.g., Qemu, VMWare, VBox
detections).

Among 35,953 repositories of Hugging Face, 2,924 (8.13%) exhibited
at least one YARA malicious payload match. The top detections are
JT 3D Visualization format (57.72%), followed by VBox, Qemu,

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems MSR ’26, April 12–18, 2026, Rio de Janeiro, Brazil

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Top 3 CWE, OWASP, and Semgrep issues across platforms.

Platform # Smelly Repos (%) Top 3 CWEs Top 3 OWASP Top 3 Rules
Hugging Face 3,110 (8.65%) CWE-502 (Unsafe Deserialization): 7,904 (74.54%)

CWE-95 (Eval Injection): 1,593 (15.02%)
CWE-676 (Dangerous Function): 466 (4.39%)

Injection: 1,894 (50.23%)
Integrity Failures: 597 (15.83%)
Insecure Deserialization: 595 (15.78%)

pickles in pytorch: 7,252 (56.51%)
numpy in pytorch: 3,048 (23.75%)
eval detected: 1,502 (11.70%)

OpenCSG 1,141 (0.59%) CWE-502 (Unsafe Deserialization): 5,449 (82.81%)
CWE-676 (Dangerous Function): 451 (6.85%)
CWE-95 (Eval Injection): 344 (5.23%)

Injection: 616 (30.36%)
Integrity Failures: 493 (24.30%)
Insecure Deserialization: 416 (20.50%)

pickles in pytorch: 4,923 (67.73%)
numpy in pytorch: 1,279 (17.60%)
automatic memory pinning: 414 (5.70%)

ModelScope 581 (0.85%) CWE-502 (Unsafe Deserialization): 526 (72.65%)
CWE-95 (Eval Injection): 144 (19.89%)
CWE-706 (Incorrectly-Resolved Name): 28 (3.87%)

Injection: 159 (58.46%)
Insecure Deserialization: 38 (13.97%)
Integrity Failures: 38 (13.97%)

pickles in pytorch: 484 (46.45%)
numpy in pytorch: 351 (33.69%)
eval detected: 143 (13.72%)

OpenMMLab 2 (12.50%) CWE-502 (Unsafe Deserialization): 8 (61.54%)
CWE-95 (Eval Injection): 3 (23.08%)
CWE-706 (Incorrectly-Resolved Name): 2 (15.38%)

Insecure Deserialization: 8 (38.10%)
Integrity Failures: 8 (38.10%)
Injection: 3 (14.29%)

avoid pickle: 8 (61.54%)
eval detected: 2 (15.38%)
non-literal import: 2 (15.38%)

PyTorch Hub 10 (38.46%) CWE-502 (Unsafe Deserialization): 25 (49.02%)
CWE-95 (Eval Injection): 16 (31.37%)
CWE-676 (Dangerous Function): 5 (9.80%)

Injection (A03:21): 19 (67.86%)
Injection (A01:17): 3 (10.71%)
Insecure Deserialization: 2 (7.14%)

pickles in pytorch: 23 (46.94%)
eval detected: 16 (32.65%)
automatic memory pinning: 5 (10.20%)

Table 4: Top 3 CWE and CodeQL issues across platforms.

Platform # Smelly Repo (%) Top 3 CWEs Top 3 Rules
Hugging Face 2,111 (5.87%) CWE-117 (Log Injection): 376 (53.49%)

CWE-20 (Input Validation): 101
(14.37%)
CWE-79 (XSS): 98 (13.94%)

Timing attack against secret: 53,432
(97.82%)
Log Injection: 376 (0.69%)
All Cryptographic Algorithms: 345
(0.63%)

OpenCSG 32 (0.00%) CWE-215 (Debug Info Exposure): 22
(23.91%)
CWE-730 (ReDoS): 22 (23.91%)
CWE-79 (XSS): 17 (18.48%)

Timing attack against secret: 6,931
(94.63%)
All Cryptographic Algorithms: 140
(1.91%)
Hash Algorithms: 140 (1.91%)

ModelScope 169 (0.25%) CWE-20 (Input Validation): 18 (78.26%)
CWE-116 (Output Encoding): 3
(13.04%)
CWE-79 (XSS): 2 (8.70%)

Timing attack against secret: 6,571
(98.75%)
All Cryptographic Algorithms: 23
(0.35%)
Hash Algorithms: 23 (0.35%)

Table 5: Top 3 YARA issues across platforms.

Platform # Smelly Repo (%) Top 3 Rules
Hugging Face 2,924 (8.13%) JT 3D Visualization format: 32,549 (57.72%)

VBox Detection: 7,560 (13.41%)
Qemu Detection: 7,546 (13.38%)

OpenCSG 40 (0.00%) Big Numbers: 70,798 (53.13%)
VMWare Detection: 16,552 (12.42%)
VBox Detection: 15,476 (11.61%)

ModelScope 212 (0.31%) JT 3D Visualization format: 5,046 (75.16%)
VBox Detection: 524 (7.80%)
Qemu Detection: 524 (7.80%)

OpenMMLab 12 (75.00%) Is Suspicious: 38 (35.51%)
TTA lossless compressed audio: 36 (33.64%)
Audio Interchange File Format: 18 (16.82%)

PyTorch Hub 3 (11.53%) Qemu Detection: 6 (23.08%)
VBox Detection: 6 (23.08%)
VMWare Detection: 6 (23.08%)

and VMWare Detection signatures, which collectively account for
more than 95% of all hits. For OpenCSG, the affected repositories
are only 40, but they had similar issues as Hugging Face, in addition
to the cryptographic malware. For ModelScope’s YARA detections
are mainly environmental evasion indicators, such as JT 3D
Visualization format, VBox Detection, and Qemu Detection.
Despite the small size of the ecosystem, OpenMMLab exhibits a
high smelly repo rate of 75.00%, with common YARA including
Is Suspicious (35.51%) and audio file signatures such as TTA and
AIFF. For PyTorch Hub, 11.53% of repositories contained at least one
YARA signature. Its top rules are evenly distributed across Qemu,
VBox, and VMWare Detection (23.08% each).

4.3 RQ3: Platform Mitigation Strategies
Table 6 summarizes the securitymechanisms of each platform.

4.3.1 Trust Models and Verification. Platforms exhibit three dis-
tinct trust paradigms. Hugging Face, ModelScope, and PyTorch
Hub follow trust-all models where any user can freely upload
models. Hugging Face augments this with verified badges for orga-
nizational identity (not security audits) [19], while PyTorch Hub
shifts trust decisions to users via the trust_repo parameter [61].
OpenMMLab implements strict verify-first with maintainer review
of all contributions through pull requests [50]. OpenCSG repre-
sents a middle ground with community trust, allowing open uploads
with optional content moderation [44, 47].

Only Hugging Face operates comprehensive automated security
scanning, triggering on every push with ClamAV (malware), Pick-
leScan (pickle/RCE), TruffleHog (secrets), plus third-party scanners
(Protect AI Guardian, JFrog) [16, 17, 22]. However, scans target
known patterns rather than comprehensive static analysis, leaving
residual RCE risks [18, 27]. OpenCSG [48], ModelScope [40], and
PyTorch Hub [61] have no documented platform-level automated
scanning.OpenMMLab relies on human reviewwithout automated
scanning [49]. No platform implements comprehensive sandboxing
for custom code execution during model loading.

4.3.2 User-Facing Protections. Hugging Face provides the most
comprehensive user protections: verified organizational badges [18],
prominent UI banners for trust_remote_code=True, file badges (ok/in-
fected), a dedicated security documentation hub [21], and SafeTen-
sors support [16]. However, model card code snippets lack inline
warnings about trust_remote_code risks. PyTorch Hub has docu-
mentation warnings emphasizing that “models are programs” [57]
with interactive prompts via trust_repo [59, 61]. ModelScope
provides only post-download trust_remote_code warnings [9, 39].
OpenCSG includes community guidelines [46] but lacks explicit
trust_remote_code warning documentation. OpenMMLab has no
warnings due to its curated, reviewed model zoo [50, 51].

4.4 RQ4: Developers’ Concern
From our systematic analysis of developers’ discussions surround-
ing the trust_remote_code mechanism, we derived a taxonomy
of concerns observed across forums, issue trackers, and community
posts (Figure 5) .

Compatibility and Integration Issues. This category represents dis-
cussions where developers report integration failures, incompati-
bilities, or unexpected behavior when enabling the trust flag. These
posts often feature vague complaints such as “it doesn’t work”, “the
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Table 6: Comparison of security and trust mechanisms across model-sharing platforms verified against official documentation.

Platform Upload Verification Trust Model Malware Scanning Warning Systems User Protection
Hugging Face Automated scanning [16, 17] Trust-all with verified badges [19] Yes – comprehensive multi-layered [6,

18]
UI warnings, file badges (ok/infected),
& verified badges [18]

Documentation hub [21], UI warn-
ings, SafeTensors support [16]

OpenCSG Open uploads via Git or web [47] Community trust [45] None documented [46] None documented [46] Documentation (community guide-
lines) [46]

ModelScope No platform-level automated scan-
ning documented [37]

Trust-all (no verification) [38] None – no platform-level scan-
ning [37]

Post-download trust_remote_code
warnings only [9, 39]

Documentation,
trust_remote_code parameter [39]

OpenMMLab Maintainer pull-request review [50] Verify-first [50] None documented [49] None documented [49] Documentation (reviewed code) [51]
PyTorch Hub No automated verification [58] Trust-all with trust_repo parame-

ter [58]
None documented [58] Interactive prompts (trust_repo),

deprecation warnings [58, 59]
Strong documentation warnings:
“models are programs” [57]
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Figure 5: Taxonomy of Developers’ Concerns.

model fails to load”, or “no support for this flag”, typically accompa-
nied by minimal debugging information.

• Pipeline Incompatibility: A recurring sub-theme involves fail-
ures when loading models through pipelines or inference APIs.
Because the trust flag is not consistently propagated through
these abstractions, developers experience silent failures or partial
functionality, requiring non-trivial debugging. These cases often
reveal architectural gaps between the core model loaders and
downstream pipeline wrappers.

• Platform Deployment Barriers:Many developers face diffi-
culties deploying trust-dependent models on managed hosting
platforms such as SageMaker, Inference Endpoints, or custom
cloud containers. Restrictions on executing remote code, secu-
rity sandboxing, and the lack of explicit trust flag support in
deployment configurations contribute to deployment dead ends.

• Version Conflicts: Another dominant sub-pattern involves ver-
sioning issues. Breakages often occur due to mismatches between
the installed library version and the model’s expected environ-
ment. Posts frequently cite outdated transformers packages,
missing backward compatibility, or changes in the trust flag’s
default behavior across versions. These issues can cascade as
small version drifts can break complex pipelines.

Desire to Avoid Remote Code Execution. This category captures dis-
cussions where developers explicitly express their reluctance or
refusal to enable the trust flag. Unlike compatibility issues, these
concerns stem from security or policy perspectives, or from a gen-
eral mistrust of executing third-party code.

• Leaderboard / Evaluation Constraints: In competitive or
benchmarking contexts, enabling trust flags is sometimes ex-
plicitly forbidden. This restriction stems from fairness, repro-
ducibility, or sandboxing requirements, forcing developers to
look for alternative workarounds.

• ManualWorkarounds:Developers frequently fork repositories,
manually download and edit model files, or patch library inter-
nals to bypass trust requirements. While these ad-hoc solutions

may allow immediate progress, they introduce technical debt,
security uncertainty, and maintenance challenges downstream.

Expectations for Official Support and Maintainability. We found
discussions that showed expectations from the community for up-
stream maintainers and platform providers to “just make it work”.
This category reflects the expectation gap between what develop-
ers assume the trust flag should offer (automatic, safe, supported
execution) and what is actually implemented (manual flag toggling,
fragmented support, and inconsistent documentation).

• Demand for Native Integration: Developers requested that
maintainers integrate model-specific custom code directly into
official libraries, thereby removing the need for explicit trust flags.
This reflects a preference for official, standardized mechanisms
over user-managed trust settings.

• Deprecation Frustrations: As the trust mechanism and related
APIs evolve, developers face broken pipelines and inconsistent
behavior. Complaints in this sub-category often highlight insuf-
ficient deprecation notices, breaking changes without migration
guides, and a lack of backward compatibility.

• Long-Term Support Concerns: Developers working in produc-
tion environments or regulated domains express concern over
whether trust-based model integrations will remain viable in the
future. These concerns are often tied to compliance, maintenance,
and stability over multiple product cycles.

Misconceptions and Confusion. Not all developer challenges arise
from genuine technical limitations. Some stemmed from an in-
complete or incorrect understanding of how trust_remote_code
operates.

• Flag vs. Revision Confusion: Developers often conflate the
trust flag with revision pinning or version control, mistakenly
believing that setting a revision automatically enables trust or
vice versa.

• Misunderstanding Trust Semantics:Many users incorrectly
assume that enabling the flag merely grants permission for meta-
data loading, not remote code execution. This misinterpretation
may lead to underestimating security implications or failing to
configure environments correctly.

• Overgeneralization: Another common misconception involves
assuming that the trust flag behaves uniformly across all model
architectures and frameworks. In practice, its support is uneven,
leading to mismatched expectations and implementation failures.

Security and Trust Concerns. It represents a distinct and high-stakes
theme in developer discourse. Here, developers explicitly reference
potential or perceived security risks associated with enabling trust
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flags. Unlike the “Desire to Avoid RCE” category, which is attitudi-
nal, this category focuses on explicit threat articulation.

• Fear of Malicious Code: Developers express concerns about ar-
bitrary code execution, supply chain compromises, or untrusted
contributors injecting malicious payloads. These discussions fre-
quently reference standard security practices, organization-level
security policies, or compliance concerns.

• Trust Model Ambiguity: Many developers do not fully under-
stand what “trusting” a model entails at the technical level (e.g.,
which parts of the repository are executed, what isolation exists,
or what verification is done). This lack of transparency fuels
suspicion and defensive behavior.

Usability and Documentation Challenges. Even when the trust mech-
anism works as intended, poor documentation, unclear error mes-
sages, or confusing flag placement can create technical barriers.

• Error Handling & Debugging: Many developers encounter
non-informative or misleading error messages when enabling or
failing to enable the trust flag. These debugging hurdles often
prolong troubleshooting cycles.

• Flag Placement Confusion: Developers frequently struggle to
identify where the trust flag should be set (e.g., in CLI arguments,
in pipeline calls, or at model initialization), especially when
documentation is inconsistent across versions.

• Poor Documentation:We found posts citing missing, incom-
plete, or outdated documentation, a lack of minimal working
examples, and inconsistent terminology.

5 Discussion
5.1 Ecosystem-wide Security Exposure
Our findings (Table 1) show that themodel-sharing ecosystem
is broadly and unevenly exposed to security risks. While only
2-4% of models on platforms such as Hugging Face, ModelScope,
and OpenCSG require custom code, this seemingly small subset rep-
resents around 45,000 repositories containing code executed at load
time. Platforms such as OpenMMLab and PyTorch Hub rely entirely
on custom code, increasing their systemic attack surface.

Static analysis with Bandit and Semgrep identified two major vul-
nerability clusters. First, low-severity but pervasive coding smells
(e.g., CWE-703, B101 assert statements) appear across 60–80% of
affected repositories, reflecting weak defensive programming prac-
tices. Second, high-impact injection and deserialization vul-
nerabilities (e.g., CWE-502, CWE-95, CWE-78) were widespread,
particularly on PyTorch Hub and Hugging Face, where dynamic
code execution via pickle and eval is common. Semgrep analysis
identified injection and insecure deserialization as the top OWASP
categories, underscoring systemic risks of arbitrary code execution
at model load time. Notably, the dominance of CWE-117 and CWE-
20 in CodeQL results reinforces our observation of low-severity but
pervasive security smells across the ecosystem. Although CWE-117
issues may seem benign, their combination with insecure crypto-
graphic patterns and unvalidated inputs increases the attack surface.
Our CodeQL analysis further underscores the uneven security
exposure across model-sharing platforms (Table 4). We found a
pattern of cryptographic weaknesses: nearly all flagged repositories

(over 97%) contain “Timing attack against secret” issues, a Cod-
eQL rule that typically signals missing constant-time operations or
insecure key handling. While these findings may not always indi-
cate immediately exploitable flaws, their pervasiveness reflects weak
default security hygiene in model repository codebases.

Importantly, these exposures are not uniform. OpenCSG, despite
a low percentage of smelly repos, contributes the highest abso-
lute number of issues due to its massive scale. PyTorch Hub, with
a smaller ecosystem, has a disproportionately high rate of high-
severity issues, highlighting differences in platform trust boundaries
and code review practices.

5.2 Gaps Between Security Mechanisms and
Developer Practices

The analysis of platform security mechanisms (Table 6) reveals
a misalignment between available safeguards and how de-
velopers interact with model repositories. Hugging Face, for
instance, operates the most advanced malware scanning pipeline,
yet unsafe practices persist widely, including reliance on pickle
serialization and unpinned revision loading. The presence of CWE-
502 and CWE-95 in hundreds of repositories demonstrates that
technical defenses alone are insufficient to change devel-
oper behavior. Similarly, ModelScope issues warning banners for
trust_remote_code but lacks sandboxing or pre-upload verifica-
tion, allowing risky code to propagate. OpenCSG and PyTorch Hub
provide minimal automated scanning, relying instead on commu-
nity trust or basic user prompts (trust_repo). The high concentra-
tion of injection- and eval-based vulnerabilities in the PyTorch Hub
underscores the risks of such lightweight defenses. Furthermore,
the low adoption of secure formats such as Safetensors (only 6.6%
on Hugging Face as of August 2025) shows that safer alternatives
are not being embraced at scale, often due to developer inertia,
ecosystem lock-in, or lack of clear incentives.

5.3 Results Implications
Our findings have implications for both academia and industry.

For Platform Operators. Platforms must move beyond passive warn-
ing systems toward enforced security boundaries, including
default sandboxing of untrusted custom code, mandatory integrity
checks, and stricter upload verificationworkflows. Richer developer-
facing telemetry (e.g., inline vulnerability alerts, dependency prove-
nance) can bridge the gap between automated scanning and practi-
cal adoption of secure practices.

For Developers and Maintainers. The results emphasize that devel-
opers play a decisive role in the security posture of model hubs.
Reliance on pickle and eval-based code should be minimized or
replaced with safe loading alternatives. Incorporating secure de-
faults, revision pinning, and code review checklists can help reduce
CWE hotspots such as CWE-502 and CWE-95.

For Researchers. Our work showed that though platforms used
shared libraries underneath, they have significant differences in
handling custom code in model loading. There needs to be work on
automated enforcement frameworks for trust boundaries, inte-
grating cryptographic integrity verification with runtime isolation.
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Our results indicate that tools such as CodeQL can reveal deep
structural weaknesses in model repository ecosystems that are
not surfaced by conventional scanners alone. This creates opportu-
nities for building automated enforcement frameworks that couple
vulnerability scanning with upload-time checks, runtime sandbox-
ing, and integrity enforcement. Future work can also examine the
adoption barriers for secure coding practices, especially around
cryptographic operations, to close the gap between warnings and
actionable defenses.

5.4 Threats to Validity
Internal Validity. A primary internal threat lies in the accuracy and
completeness of our static analysis. Although we employed three
well-established tools—Bandit, CodeQL, and Semgrep—to identify
security smells and CWE patterns, they may produce false positives
or false negatives. However, Siddiq et al. show Bandit has 90.79%
precision [65]. Semgrep, CodeQL, and YARA are widely used in
the research community [2, 14, 31, 33, 41, 42, 66, 67]. Moreover, we
manually analyzed discussion posts to conduct open-coding. As
mentioned before, this coding was conducted collaboratively by the
two authors, whose software development experience ranged from
4 to 12 years, with disagreements resolved by the senior author.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement [7].

External Validity. Our results may not fully generalize beyond the
platforms studied. We focused on five major platforms—Hugging
Face, OpenCSG, ModelScope, OpenMMLab, and PyTorch Hub—that
dominate the model-sharing ecosystem. For example, Hugging
Face hosts around 1.7 million models, and OpenCSG hosts around
200k models. Smaller or private repositories (e.g., enterprise model
registries) may exhibit different security characteristics.

6 Related Work
Evolution of Model Hosting Platforms and Pipelines. The evolution
from localized model development to centralized sharing platforms
constitutes a shift to collaborative ML practices. In the early stages,
researchers relied on manual distribution via institutional web-
sites or GitHub repositories, requiring end users to rebuild the
entire training and execution environment to reproduce results.
The first generation of organized model distribution are mainly
Caffe (2014) and TensorFlow Hub (2018). With PyTorch Hub created
in 2019, the torch.hub.load() interface was also released along
with the trust_repo parameter [58]. The rapid expansion of Hug-
ging Face between 2018 and 2023 further reshaped the landscape:
evolving from a simple hosting repository to a fully integrated plat-
form supporting training, inference, and deployment workflows. Yi
et al. [71] provides a comprehensive analysis of this ecosystem’s
development, showing how model hubs have become critical infras-
tructure sustaining millions of models and billions of downloads
worldwide. This infrastructural transformation is further quanti-
fied by Laufer et al. , by analyzing two million models hosted on
Hugging Face [34]. Their findings highlight the platform’s support
for over 4,000 distinct architectures, with an increasing proportion
of models depending on custom code to enable advanced function-
ality beyond standard implementations. Our work focuses on the

architectural design of executing code during model loading from
the hub.

Quality and security issues of Model Hubs. Jiang et al. [30] conducted
the first systematic study of these artifacts across eight platforms,
revealing that trust relationships in model ecosystems are more
implicit and poorly understood than in traditional software. Hu et
al. . [15] identifies open problems in the LLM supply chain, docu-
menting how fine-tuning workflows, adapter layers, and prompt
templates all serve as injection points. Yi et al. [71] further charac-
terizes these risks from an edge-computing perspective, showing
how LLM-integrated platforms create new trust boundaries among
cloud services, edge devices, and end users.

The introduction of weights_only=True in PyTorch 1.13 [59] and
the trust_remote_code flag in Transformers 4.0 [23] represent ac-
knowledgments of the risks, but adoption remains low due to com-
patibility concerns. Alternative serialization approaches exhibit
different trade-offs between security and functionality. SafeTensors,
introduced by Hugging Face in 2022 [26], uses a simple header-data
format that prevents code execution entirely. The format stores
tensors in a flat layout with minimal metadata, enabling zero-copy
loading while eliminating executable payloads. However, as our
results show and Laufer et al. . confirm [34], only 6.6% of models
have adopted this format despite platform encouragement. Recent
work on secure deserialization provides partial solutions.

While platform owners use scanners to identify vulnerable code
and data, Zhao et al. ’s deployment of MalHug [72] identified 91
malicious models and 9 dataset scripts actively exploiting users.
JFrog Security Research [29] documented evasion methods that
bypass pattern-based scanning, including time-delayed execution,
environment fingerprinting, and polymorphic code generation. The
August 2025 Protect AI report [55], based on scanning 4.47 million
model versions, identifies emerging threats, such as archive slip
vulnerabilities and TensorFlow-specific backdoors, that existing
toolsmiss. Ourwork specifically focuses on the code associatedwith
the model, which is executed during loading, and on developers’
concerns about it.

7 Conclusion
Our work provides the first large-scale, cross-platform empirical
analysis of remote code execution risks in MLmodel hosting ecosys-
tems, examining five major platforms. We identified that around
45,000 repositories execute arbitrary code during model loading.
Our static analysis evealed most repositories have weak defensive
coding practices, and injection and deserialization vulnerabilities
(e.g., CWE-502, CWE-95, CWE-78. We also found that most of the
malicious code in the category of environmental evasion indicators
(e.g., Qemu, VMWare, VBox detections). Although Hugging Face
has made significant advances with automated malware scanning
pipelines (e.g., ClamAV, PickleScan, Protect AI Guardian), these
mechanisms alone are insufficient. Other platforms lack compara-
ble safeguards, with minimal or no sandboxing and weak verifica-
tion mechanisms. Developer discussions further reveal widespread
confusion and misconceptions about trust flags, limited adoption of
secure serialization formats like SafeTensors, and tension between
usability and security.
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