23
24
25
26
27
28
29

39
40
41
42
43
44

An Empirical Study on Remote Code Execution in Machine
Learning Model Hosting Ecosystems

Anonymous Author(s)

Abstract

Model-sharing platforms (e.g., Hugging Face) have become cen-
tral to modern ML development, enabling easy sharing and reuse
of pre-trained models. However, this flexibility introduces serious
risks, as models may execute untrusted code during loading (e.g.,
via trust_remote_code). This paper presents the first large-scale
empirical study of custom model-loading practices across five major
platforms, examining their prevalence, risks, and developer per-
ceptions. We quantify how often models rely on custom code and
identify those executing arbitrary Python files. Using Bandit, Cod-
eQL, and Semgrep, we detect security smells and categorize findings
by CWE identifiers, complemented by YARA-based malware sig-
nature scans. We further analyze each platform’s documentation,
APIs, and safeguards, and qualitatively study over 600 community
discussions. Our results reveal widespread unsafe defaults, incon-
sistent security enforcement, and pervasive developer confusion
about the risks of remote code execution.

CCS Concepts

« Security and privacy — Systems security; Software secu-
rity engineering; - Software and its engineering — Software
infrastructure.

Keywords

Large Language Models (LLMs), Software Security, Remote Code
Execution, Model Hub

ACM Reference Format:

Anonymous Author(s). 2026. An Empirical Study on Remote Code Execu-
tion in Machine Learning Model Hosting Ecosystems. In Proceedings of
The Mining Software Repositories (MSR), April 12—18, 2026, Rio de Janeiro,
Brazil. ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction

Large Language Models (LLMs) have been increasingly used in
day-to-day conversation and assisting tasks [3, 43, 53]. These mod-
els are based on different transformer architectures [68]and their
advancements. These have enabled the creation of models with
unprecedented scale, often comprising billions or even trillions of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

parameters [43]. Models are continuously reused, re-tuned, and
evaluated for new tasks. Model hubs (or model registries) like
Hugging Face play a critical role in this ecosystem by providing
a centralized platform for hosting and sharing pre-trained models
and datasets [72]. As of October 2025, Hugging Face alone hosts
around 1.7 million models, fostering an open and collaborative
environment for developers and researchers worldwide.

While model hubs and their supporting libraries (e.g., transformers
[70] and PyTorch [61]), enable the seamless distribution of model
weights, some models inherently require code execution to function
correctly [24]. Early neural network architectures relied on stan-
dardized, composable layers that could be fully described through
configuration files. In contrast, current LLMs often introduce non-
standard architectural components (e.g., custom attention mecha-
nisms, domain-specific preprocessing steps, and hardware-aware
optimizations) that cannot be easily serialized without accompany-
ing executable code [71]. For example, when researchers develop a
new transformer variant with a novel positional encoding scheme,
they must distribute not only the trained weights but also the accom-
panying Python code that specifies how those weights are applied
during inference. Without this code, downstream users would need
to manually re-implement the architecture, making model sharing
inefficient and, in many cases, impractical [15].

Allowing code to run during model loading increases flexibility but
also introduces security risks [72]. One security issue arises from
unsafe serialization formats such as Python’s pickle, which can
execute arbitrary code during deserialization via the __reduce__
method—turning model files into potential attack payloads [4, 32].
Prior work has shown that malicious pickle-based models in the
wild have been used to deploy reverse shells and steal credentials [5,
72]. Another distinct security problem comes from custom remote
code execution, enabled when users load models with flags such
as trust_remote_code=True. This allows arbitrary Python modules
provided by model authors to run locally, extending the attack
surface beyond serialized data to unverified source code.

Consequently, loading models from public hubs creates implicit
trust relationships among users, model authors, and platforms (a
trust that is often misplaced [30]). While previous work has exam-
ined deserialization attacks [20, 20], the prevalence and risks of
custom remote code execution during model loading remain
largely unexplored. Therefore, this paper closes this gap through
a large-scale empirical study across five major model-sharing plat-
forms (Hugging Face [25], OpenCSG [48], ModelScope [40], Open-
MMLab [52], and PyTorch Hub [61]). We first quantify how often
models rely on custom loading code and identify those that exe-
cute arbitrary Python files. We then apply multiple static analysis
tools (Bandit, CodeQL, and Semgrep) to detect potential vulner-
abilities and categorize them by CWE identifiers. In parallel, we

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

analyze each platform’s documentation, APIs, and security con-
trols to assess mitigation practices, nd qualitatively examine over
600 developer discussions from GitHub, Hugging Face, PyTorch
Hub, and Stack Overflow to capture community perceptions and
misconceptions about security and usability.

The contributions of this work! are:

o The first cross-platform, large-scale measurement study of un-
trusted model code execution across five major model-sharing
platforms: Hugging Face [25], ModelScope [40], OpenCSG [48],
OpenMMLab [52], and PyTorch Hub [61].

e We systematically detect and categorize security weaknesses
using three static analyzers in around 45,000 repositories con-
taining custom code. Moreover, we incorporate signature-based
malicious pattern detection using YARA [35] to identify potential
payloads.

o We analyze platform-level defenses, including warning systems,
static and dynamic scanning, and trust flag mechanisms.

o We create a taxonomy about developers’ perception about remote
code execution during model loading after examining around 600
developer discussions from forums, GitHub issues, pull requests,
and Q&A sites.

2 Background
2.1 Model Loading with Executable Code

Unlike traditional data files, modern ML models may require code
execution for technical reasons. Early neural networks consisted
of standardized layers that could be described solely by configura-
tion, but contemporary architectures implement novel mechanisms
(e.g., custom attention patterns, domain-specific preprocessing, etc.)
that cannot be expressed without executable code [71]. Thus, when
developers implement a new transformer variant with unique posi-
tional encoding, they must ship both the trained weights and the
Python code defining how those weights interact. The alternative
would require every user to manually reconstruct the architecture,
making large-scale model sharing impractical [15].

This technical need manifests through platform APIs that are simple
to use. When developers call from_pretrained or pipeline methods,
the transformers library downloads multiple files, including Python
modules that execute with full system privileges when remote
code trust flags are enabled. Whenever the repository contains spe-
cific entry-point files, such as modeling_x.py, tokenizer.py, or
hubconf . py, they are automatically imported and executed as part
of the model initialization process. While these files often contain
legitimate code that defines how the model operates, an attacker
can embed malicious payloads in them that would execute with
the same privileges as any other local Python process. This means
that enabling trust_remote_code (for transformers) or trust_repo
(for PyTorch Hub) effectively grants remote repositories the ability
to run arbitrary Python code on the host machine. Platforms like
Hugging Face host over 1.7 million models, with thousands added
daily, making manual review impractical and automated scanning
insufficient [34].

IThis study’s replication package is available at [1].

Anon.

To illustrate, Figure 1 shows how model loading can trigger code
execution. On the left, a developer defines a custom configuration
class (DeepseekV3Config) that extends the transformers library’s
base configuration. This file, stored in the model repository, con-
tains Python code that can be executed when the model is loaded.
On the right, a user loads this same model from Hugging Face using
the pipeline API and sets trust_remote_code=True. This flag tells
the library to trust and run any Python code provided by the re-
mote repository, effectively downloading and executing unverified
scripts from the internet.

DeepSeek-Ri/configuration_deepseek.py
from transformers.configuration_utils import
PretrainedConfig
from transformers.utils import logging

inference.py
1. from transformers import pipeline
2

pipe = pipeline(’text-generation”,
model="deepseek-ai/DeepSeek-R1",
trust_remote_code=True)
messages = [
{"role": "user",
content”: "Who are you?"}

3
4
logger = logging.get_logger(__name__) 5
6
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} 7

8

coNaaEBN o

©

class DeepseekV3Config(PretrainedConfig): 1
10. pipe(messages)

Figure 1: Example of a custom configuration script (left) and
loading a custom model (right).

This customization mechanism introduces a serious security risk:
an attacker can upload a model repository containing malicious
code to deliver payloads like reverse shells, keyloggers, or data exfil-
tration scripts [72]. Since the customization code executes automat-
ically during model loading, users who enable trust_remote_code
may unknowingly grant full system access to untrusted code. This
behavior makes large-scale model sharing both powerful and poten-
tially dangerous, especially when combined with the high volume
of new models uploaded daily.

2.2 Code Smells & Security Smells

Code smells are indicators of poor design or implementation choices
that may not immediately cause failures but often lead to main-
tainability issues and increased defect risk [10, 54]. They typically
reflect violations of good design principles, making software harder
to evolve and more error-prone.

A specific subset of code smells, called security smells, is associ-
ated with patterns that may introduce or signal the presence of
vulnerabilities [11, 63, 64]. These patterns do not always constitute
exploitable vulnerabilities but highlight code areas where security
controls are weak or outdated.

2.3 Threat Model

Custom model loading introduces complex trust boundaries among
three main stakeholders: model creators, platform maintainers, and
model consumers. Figure 2 provides an overview of our threat model,
which examines how these boundaries can be exploited when plat-
forms allow arbitrary code execution during model loading.

Adversary Assumptions. We assume that attackers have accounts on
model platforms and can upload models or modify existing reposi-
tories. Adversaries may also leverage community features, such as
discussions or pull requests, to disseminate or promote malicious
content. We consider two adversary types: (1) a malicious developer
who intentionally uploads a model with harmful customization

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems

Embed payload Push code ™ | oad malicious model
v g -
e l

>
Attacker 0 Malicious Rogue

(malicious developer) customization code model repository

-
izati Original
Custzr:‘;zaﬂon model rgpository m User
. % - Load malicious modeIT
% : Interg,
Push --_‘,_epl___-~
& —>C0de C — 3 A User
‘ Embed 01 ﬁo Load malicious model Sl
Compromised payload Malicious Attacker
maintener customization code (AiTM attack)

Figure 2: Threat model overview

code, and (2) a compromised maintainer whose credentials or to-
kens were hijacked to distribute poisoned models under the guise of
a reputable author. Importantly, not all threats arise from deliberate
attacks. Model contributors who are unaware of secure publishing
practices may unintentionally introduce insecure code, effectively
expanding the threat surface without adversarial intent.

Threat Scenarios. Three threat scenarios exist (§1-S3):

S1 Malicious Fork. An attacker downloads an existing benign
model M, changes the custom code with a harmful payload
(e.g., reverse shell), and uploads a modified model M’ to their
own (rogue) repository while presenting it as an enhanced or
compatible version of the original. Model consumers would
need to set trust_remote_code=True to be able to use the
model, which would lead to the execution of the malicious
payload.

S§2 Compromised Trusted Account. A trusted maintainer ac-
count is hijacked, allowing the attacker to upload a modified
model M’ with malicious accompanying custom code directly
to a legitimate, widely used repository. Consumers may trust
the model due to its reputation, verified badges, or high down-
load counts. Similar to Scenario 1, attackers can embed arbi-
trary Python logic in initialization files or leverage dependency
manipulation. Social engineering and trust hijacking further in-
crease the likelihood of exploitation, as users are more inclined
to enable trust_remote_code=True for “trusted” sources.

S$3 Attacker-in-the-middle (AiTM). An attacker intercepts or
tampers with the model distribution channel and modifies the
model’s custom code during transfer or dependency resolution
(e.g., via compromised mirrors, registries, or proxy layers). This
can also occur indirectly through poisoning or replacing cached
artifacts stored by hosting platforms (e.g., Hugging Face cache
directories), allowing the attacker’s modified version to be
loaded even if the original upstream repository remains clean.
As aresult, when users enable trust_remote_code=True, they
may execute the injected payload from the cached or inter-
cepted model, effectively transforming a previously benign ar-
tifact into a malicious one. Attackers may exploit dependencies
and supply-chain manipulation, injecting malicious payloads at
download or cache resolution time. Since the model is cached
locally, future loads may execute the attacker’s payload even
without further network interaction.

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

Not all risks stem from malicious actors. Model creators with lim-
ited security awareness may unintentionally include unsafe ini-
tialization code, hard-coded credentials, or insecure dependency
calls. Although unintentional, such models can still be weaponized
post-deployment, expanding the platform’s overall attack surface
without deliberate adversarial behavior. Weak sandboxing, overly
permissive dependencies, and a lack of static or runtime checks al-
low insecure code to run automatically during model loading, mak-
ing these models soft targets for downstream exploitation.

Trust Relationships. Model consumers implicitly trust platform in-
terfaces and configuration defaults (e.g., trust_remote_code=True
or trust_repo=True) to safely retrieve and execute model code.
This trust is often amplified by perceived platform reputation or
download counts, which may lead users to overlook warning prompts
or disable security mechanisms for convenience. Platform main-
tainers, in turn, trust model contributors to follow safe publishing
practices, while contributors depend on the platform to enforce
isolation and verification mechanisms. The intersection of these
assumptions creates a vulnerable trust boundary.

3 Methodology
3.1 Research Questions (RQs)

As shown in Figure 3, we answer four RQs that explore the preva-
lence, risks, and developers’ perceptions of custom model loading
across model hubs.

[RQI: To what extent is custom model loading required?]

Model-sharing platforms, such as Hugging Face and ModelScope,
enable developers to provide custom code for loading or configuring
models. While these capabilities increase flexibility and support
novel architectures, they also introduce security risks within the
ecosystem. In this RQ, we investigate how many models hosted on
these platforms include custom code that is required to be executed
upon model loading.

RQ2: Do remote code implementations for custom mod-
els contain vulnerabilities, security smells, or malicious
payloads?

Allowing arbitrary code execution raises concerns about the intro-
duction of vulnerabilities and insecure practices. Previous work has
shown that code provided by the community may contain security
smells, such as unsafe deserialization [4, 5, 72]. In this RQ, we per-
form a systematic analysis of the models’ customization code to
determine the prevalence of vulnerabilities and potential exploit
vectors.

RQ3: What do the platforms offer for developers to miti-
gate the execution during model loading?

Platform hubs play a crucial role in enforcing safe defaults, pro-
viding comprehensive documentation, and implementing technical
safeguards (e.g., sandboxing, warning banners, or permission sys-
tems). In this RQ, we investigate the existing security mechanisms
provided by various platforms. We examine whether platforms pro-
vide static or dynamic checks, whether they expose developers and

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366

367

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

end-users to explicit warnings when running custom code, and
how policies such as trust_remote_code or trust_repo flags or
isolated execution environments are enforced in practice.

RQ4: What are the developers’ concerns around code exe-
cution during model loading?

Beyond technical vulnerabilities, it is crucial to understand the
perspective of developers who contribute to and use these models.
Their concerns may range from usability (e.g., friction in using
security mechanisms) to trustworthiness (e.g., fear of executing
malicious code) and maintainability (e.g., lack of long-term platform
support for their contributions). In this RQ, we collect and analyze
developer discussions from Hugging Face and PyTorch Hub forums,
GitHub discussions, pull requests, issues, and StackOverflow Q&A
platforms to understand practitioners’ concerns, misconceptions,
and expectations.

~ Hugging Face

EI]OPEHCSG Retri tadata for all Filte v « RQl ’
rieve metadata for al ilter =
v NG
. _‘Ope”w“ Leb model repositories a repositories =
L 45+ ope '

Model repos Subset of Prevalence

WAL L e el posres 1%
Security Smell & Vulnerability Analysis « RQ2 »

F2 ©Banait fyara | T

Python ©00 Semgrep Analysis

results
« RQ3 »

= Safety Mechani q

List of Mitigations

N - — « RQ4 »
O & L om0 @ i

Q&A and Discussion
Platforms

code files

Documentation Review &
Repository Inspection

Figure 3: Methodology Overview

3.2 Platform Selection

We first examined a recent list of popular model-sharing platforms
compiled by Jian et al. [72], which identified the top 15 model
hubs. We then applied the following inclusion criteria to determine
whether a given model hub (henceforth referred to as a “platform”)
qualified for our study. A platform was included only if it satisfied
all of the following conditions: (1) it is publicly accessible; (2) it
provides practical means to retrieve information from all hosted
model repositories (e.g., through APIs or web crawling); (3) the
hosted models can be programmatically fetched and instantiated
through standard model-loading APIs provided by transformers,
torch.hub, or their respective wrappers, without requiring any
reimplementation; and (4) it supports libraries or mechanisms that
permit the execution of custom code during model loading. After
this manual analysis, we identified 5 platforms for inclusion in
our study: Hugging Face [25], OpenCSG [48], ModelScope [40],
OpenMMLab [52], and PyTorch Hub [61].

3.3 Model Repositories Selection

After selecting the platforms, we collected metadata for all model
repositories published within these platforms. Specifically, we cap-
tured the repository’s access URLs, tags, and file list. Next, we

Anon.

applied the following inclusion criteria to identify model reposito-
ries that require custom code execution during model loading. A
repository was included if it satisfied any of the following criteria:
(i) it was tagged with the custom_code tag; or (ii) it contained
one of the files tokenizer.py, __init__.py, or hubconf.py; or
(iii) it included a Python file whose name began with modeling_,
tokenization_, or configuration_. These conditions are based
on the documentation of the Pytorch Hub [60] and the transformers
library [24]. The OpenMMLab platform, on the other hand, has its
own library for loading custom models. Therefore, we included all
the repositories listed on this platform in our analysis.

3.4 Security Smell, Vulnerability, and Malicious
Payload Analysis

After collecting the models, we used three static analyzers to iden-
tify security smells and potential vulnerabilities: Bandit [56], Cod-
eQL [13], and Semgrep [62]. To further identify malicious patterns
and payload signatures, we employed YARA [35]. These tools pro-
vide complementary coverage, combining lightweight static analy-
sis with signature-based detection of malicious code.

Bandit (v1.8.6). 1t is a security linter that statically inspects the ab-
stract syntax tree (AST) of Python code to detect common vulnera-
bilities such as the use of unsafe functions (eval, exec, pickle. load),
weak cryptographic algorithms, hardcoded credentials, and inse-
cure temporary file creation. It also maps findings to Common
Weakness Enumeration (CWE), which is a list of common types of
software vulnerabilities [36]. We executed Bandit recursively on
all Python files extracted from each model repository, generating
structured JSON outputs for aggregation and comparison.

CodeQL (v2.15.0). It performs static analysis by compiling source
code into a relational database of program elements (e.g., functions,
variables, control flow, and data flow) and executing declarative QL
queries to detect security flaws. It enables inter-procedural and data-
flow analysis for complex vulnerabilities such as injection, path tra-
versal, and insecure deserialization. We executed CodeQL with the
official query pack provided by GitHub Security Lab [12].

Semgrep (v1.139.0). It is a lightweight, multi-language static ana-
lyzer that uses rule-based pattern matching to detect both general
and domain-specific security issues. Unlike CodeQL, which requires
query compilation, Semgrep matches syntactic and semantic pat-
terns directly in the codebase, making it efficient for large-scale
scanning. We used its built-in rulesets to identify security miscon-
figurations, unsafe API usage, and insecure imports across various
model repositories. Findings were grouped by CWE and severity
level to facilitate cross-tool comparison.

YARA (v4.5.2). It is a rule-based pattern-matching engine widely
used in malware detection and digital forensics [41, 42]. Unlike
the previous static analyzers, which focus on identifying insecure
coding patterns or API misuse, YARA detects known malicious
behaviors through signature-based matching of strings, byte se-
quences, and regular expressions. This approach allows it to un-
cover embedded payloads that may not manifest as conventional
security smells—for example, reverse shells, obfuscated network
beacons, or credential-stealing scripts. The official YARA GitHub

407
408
409
410
411
412
413

414

416
417
418
419
420
421

422

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems

repository [69] provides a reference to a curated list of well-known
rule sources [28]. From these 70 publicly available sources, we suc-
cessfully compiled 7,657 rules from 25 sources to scan the collected
repositories (they failed to compile rules due to them being outdated
with respect to the version we have used in our work).

3.5 Platform Mitigation

To answer RQ3, we systematically examined each platform to iden-
tify mechanisms mitigating unsafe model loading. We first reviewed
official documentation and API references to understand declared
security policies for custom code execution. We then analyzed open-
source repositories (if available) to verify enforcement of safety
configurations such as trust_remote_code or trust_repo. From
these sources, we identified their used safeguards (e.g., static and
dynamic checks, warning prompts, sandboxed execution, etc.) and
compared them across platforms to evaluate consistency, enforce-
ment, and gaps.

3.6 Developers’ Concerns

To answer our RQ4, we focused on the Hugging Face and PyTorch
Hub forums, GitHub discussions, pull requests, issues, and the Stack
Overflow Q&A platform. We searched these platforms using the
keywords trust_remote_code and trust_repo. We identified a
total of 418 Hugging Face forum posts, 354 GitHub discussion
posts, and 289 Stack Overflow posts. For GitHub issues, there were
more than 13,000 retrieved issues, and for GitHub pull requests,
more than 4,000 PRs, using the aforementioned query. Thus, we
kept only issues and PRs that included any of the search query
keywords in their titles. Then, two authors manually filter them
in parallel to include them in our study based on their relevance.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement between the two authors [7]. A senior author with over
10 years of experience resolved the discrepancies.

After manually filtering for relevance to our study, we retained 27
GitHub discussions, 222 GitHub issues, 297 GitHub pull requests, 27
Stack Overflow posts, and 39 Hugging Face discussions. An entry
was deemed as relevant if it explicitly discussed the functional-
ity, security implications, integration issues, maintenance actions,
or community understanding related to trust_remote_code or
trust_repo, rather than merely mentioning the keyword in a code
snippet as shown in the example in Listing 1. It is important to
note that although we collected 23 discussions from PyTorch Hub’s
forums, none of them were relevant to our study.

We then applied an open coding approach to the selected posts [8],
carefully reading, analyzing, and annotating each post with con-
ceptual labels (codes) reflecting developers’ expressed sentiments,
challenges, and misunderstandings. The coding was conducted
collaboratively by the authors, whose software development expe-
rience ranged from 4 to 12 years. To ensure consistency, disagree-
ments were discussed in weekly calibration meetings. If there was a
discrepancy, the senior author mitigated it. We iteratively reviewed
and refined the codes through regular calibration meetings until
conceptual saturation was achieved.

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

4 Results
4.1 RQ1: Prevalence of Custom Models

Table 1 provides a summary of the collected model repositories
containing custom code. For Hugging Face, OpenCSG, and Mod-
elScope, approximately 2% to 4% of the models include custom
code. In contrast, for OpenMMLab and PyTorch Hub, all available
repositories rely on custom code.

Table 1: Result of collected repositories with custom codes.

Repos with

Platform # Repos custom code (%) Supported Libs.
Hugging Face 1,699,968 35,953 2.11% transformers

OpenCSG 192,556 6165 3.20% transformers
ModelScope 68,736 3193 4.65% PyTorch & transformers
OpenMMLab 16 16 100.00% MMengine & PyTorch
PyTorch Hub 26 26 100.00% PyTorch

Figure 4 depicts the top 10 tag distributions of custom models across
Hugging Face, ModelScope, OpenCSG, OpenMMLab, and PyTorch
Hub platforms. For Hugging Face, the majority of custom models
are used for text generation (66.5%), followed by feature extraction
(approximately 10%). In contrast, for OpenCSG, around 21.8% of the
custom models are used for text generation, while roughly 15.1% are
associated with speech-related tasks. Finally, for ModelScope, the
distribution indicates that most custom models are concentrated
in scientific and domain-specific applications, reflecting its distinct
usage patterns compared to the other two platforms. For PyTorch
Hub, most models focus on vision, speech, and audio tasks, whereas
in OpenMM Lab, model repositories mainly contain custom models
for object detection and other vision tasks.

4.2 RQ2: Security Analysis

Bandit Results. Table 2 presents the distribution of vulnerability
types (CWE IDs) and the top Bandit issues by severity across five
major model-sharing platforms. Across all platforms, CWE-703
(Improper Check or Handling of Exceptional Conditions) is
by far the most common weakness, especially on Hugging Face
(78%) and ModelScope (80.95%), indicating that model repositories
frequently include weak or missing exception handling logic. This
pattern is associated with the Bandit low-severity rule B101 (assert
statements), which alone accounts for 60-80% of all detected issues
on most platforms. While these may not directly expose models
to immediate exploits, they represent fragile or insecure coding
practices that can lead to reliability and maintainability problems.

For Hugging Face, out of 35,953 repositories with custom codes,
3,743 (10.41%) exhibited at least one security smell. In addition to
CWE-703, CWE-494 (Download of Code Without Integrity Check)
and CWE-259 (Use of Hard-coded Password) were common. For
OpenCSG, despite a relatively modest “smelly” repository rate of
2.34%, the absolute number of issues is the highest among all plat-
forms. Unsafe downloads (B615, 15.11%) and unsafe PyTorch loads
(B614, 5.81%) were particularly common. ModelScope shows the
lowest proportion of affected repositories (0.33%), yet a similar
CWE profile dominated by CWE-703 and CWE-259. The high preva-
lence of B101 issues indicates poor exception-handling practices.

525
526
527
528

529

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

578
579

580

581
582
583
584

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

OpenCSG
y{4.1%

image-to-text {0.7 multimodal

image-classificati n_voice_8_0
an feature-extraction

image-text-to-text

generated_from_trainer % internvi
66.5% text-generation o custom_code

text-generation

0 5000 10000
Count

ModelScope
3.9%

Anon.

OpenMMLab
7.7%

PyTorch Hub
7.1%

benchmark speech

mdet . speech-recognition

convnext machine-learning

vision-transformer | python
ol

e
transformer
gan

swin-transformer
object-detection

deep-learning
imagenet
pretrained-models

deep-learning

Figure 4: Tag distributions of the custom models across different platforms.

Table 2: Top 3 CWE and top 1 Bandit issue per severity across platforms.

Platform ___# Repos Analyzed # Smelly Repo (%) Top 3 CWEs

Top 1 Issue per Severity (H, M, L)

Hugging Face 35,953 3,743 (10.41%) CWE-703 (Exception Handling): 160,967 (78.09%) H1. B605 - Starting a process with a shell. (394; 0.19%)
CWE-494 (No Integrity Check): 19,840 (9.62%) M1. B615 — Unsafe Hugging Face Hub download. (17,042; 8.01%)
CWE-259 (Hard-coded Password): 13,919 (6.75%) L1. B101 - Use of assert detected. (157,788; 74.18%)

OpenCSG 192,556 4503 (234%) CWE-703 (Exception Handling): 40,433 (64.55%) H1. B605 - Starting a process with a shell. (221; 0.34%)
CWE-494 (No Integrity Check): 13,298 (21.23%) M1. B615 — Unsafe Hugging Face Hub download. (9,957; 15.11%)
CWE-502 (Unsafe Deserialization): 4,426 (7.07%) L1. B101 - Use of assert detected. (39,717; 60.28%)

ModelScope 68,736 229 (0.33%) CWE-703 (Exception Handling): 20,490 (80.95%) H1. B605 - Starting a process with a shell. (22; 0.09%)
CWE-259 (Hard-coded Password): 2,584 (10.217%) M1. B615 — Unsafe Hugging Face Hub download. (1,278; 4.95%)
CWE-494 (No Integrity Check): 1,455 (5.75%) L1. B101 - Use of assert detected. (20,169; 78.17%)

OpenMMLab 16 12 (75.00%) CWE-703 (Exception Handling): 848 (86.44%) H1. B301 - pickle used to deserialize untrusted data. (4; 0.41%)
CWE-259 (Hard-coded Password): 124 (12.647%) L1. B101 - Use of assert detected. (848; 86.447%)
CWE-502 (Unsafe Deserialization): 6 (0.61%)

PyTorch Hub 26 12 (46.15%) CWE-78 (O Command Injection): 42 (35.90%) H1. B605 ~ Starting a process with a shell. (2; 7.69%)

CWE-703 (Exception Handling): 40 (34.19%)
CWE-502 (Unsafe Deserialization): 20 (17.09%)

M1. B301 - pickle used to deserialize untrusted data. (1; 3.85%)
L1. B101 - Use of assert detected. (34; 30.77%)

Although the total number of repositories is small (16) for Open-
MMLab, 75% of them contained security smells. For this platform,
CWE-703 accounted for 86.44% of issues, and unsafe deserializa-
tion (B301) and eval usage (B307) were notable medium-severity
findings. For PyTorch Hub, nearly half of the repositories (46.15%)
contained security issues. Unlike other platforms, CWE-78 (OS
Command Injection) was the most common weakness, reflecting
the frequent use of shell commands and eval functions. This con-
firms that this platform is particularly susceptible to remote code
execution risks.

Semgrep Results. Table 3 summarizes the distribution of vulnerabil-
ity types (CWE IDs), top OWASP categories, and the most frequent
Semgrep rule violations across major model-sharing platforms. Un-
like Bandit’s results, which primarily had lower-severity coding
smells, the Semgrep analysis reveals a clear concentration of security-
critical issues, more specifically related to unsafe deserialization,
code injection, and integrity failures. Across all platforms, CWE-
502 (Deserialization of Untrusted Data) is the most common
weakness, consistently appearing in 50-80% of the flagged reposi-
tories. Additionally, CWE-95 (Eval Injection), CWE-676 (Use of Po-
tentially Dangerous Function), and CWE-706 (Improper Handling
of Variadic Functions) appear across platforms. The top OWASP
categories identified through Semgrep closely align with injection-
based threats. Injection vulnerabilities dominate on most platforms
(e.g., 54.6% on Hugging Face and 67.9% on PyTorch Hub), followed
by Insecure Deserialization and Integrity Failures.

Hugging Face had 8.65% of its repositories affected, with more
particularly CWE-502 and CWE-95. A small proportion (0.02%) of
repos from OpenCSG showed issues, with CWE-502 dominating
(82.76%). ModelScope shows a similar low impact (0.05%), but CWE-
502 is still dominant (62.5%). The presence of CWE-22 and CWE-
502 highlights insecure file operations and deserialization risks.
For PyTorch Hub, there is a highest relative impact (53.85%), with
CWE-502 and CWE-95 dominating.

CodeQL Results. Table 4 shows the distribution of CWE IDs and
the most frequent CodeQL rule violations among Hugging Face,
OpenCSG, and ModelScope as it did not find any issues in OpenMM-
Lab and PyTorch Hub. Across all platforms, CWE-117 (Improper
Output Neutralization for Logs) and CWE-020 (Improper In-
put Validation) are the most common issues. Additional findings
include CWE-079 (Cross-site Scripting), CWE-209 (Information
Exposure Through an Error Message), and CWE-022 (Path Traver-
sal) are also frequent. Most issues detected by CodeQL are under
the “Timing attack against secret” query, accounting for more
than 90% of all detections across platforms. This pattern indicates
that many repositories rely on non-constant-time cryptographic
comparisons, which are vulnerable to side-channel attacks.

About 5.87% of repositories were flagged with CodeQL alerts for
Hugging Face. CWE-117 accounted for over half of all detected
weaknesses (53.49%), showing poor log sanitization practices. Al-
though the absolute number of flagged repositories is low (32) for
OpenCSG, CWE-215 (Information Exposure Through Debug Infor-
mation) and CWE-730 (OWASP Top Ten 2004 Category A9) stand
out. A small proportion of repositories (0.25%) from ModelScope
contain CWE-020 (78.26%), CWE-116 (Improper Encoding or Escap-
ing), and CWE-079. Timing-attack patterns again dominate (98.75%),
often coupled with weak cryptographic configuration.

YARA Results. Table 5 presents the distribution of YARA signature
matches across the model-sharing platforms. The results reveal that
while malware-related signatures are concentrated in a relatively
small fraction of repositories, and across all platforms, the most
frequently triggered YARA signatures belong to the category of
environmental evasion indicators (e.g., Qemu, VMWare, VBox
detections).

Among 35,953 repositories of Hugging Face, 2,924 (8.13%) exhibited
at least one YARA malicious payload match. The top detections are
JT 3D Visualization format (57.72%), followed by VBox, Qemu,

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 3: Top 3 CWE, OWASP, and Semgrep issues across platforms.

Platform __ # Smelly Repos (%) Top 3 CWEs

Top 3 OWASP.

Top 3 Rules

Hugging Face 3,110 (8.65%) CWE-502 (Unsafe Deserialization): 7,904 (74.547%) Injection: 1,894 (50.23%) pickles in pytorch: 7,252 (56.51%)
CWE-95 (Eval Injection): 1,593 (15.02%) Integrity Failures: 597 (15.83%) numpy in pytorch: 3,048 (23.75%)
CWE-676 (Dangerous Function): 466 (4.39%) Insecure Deserialization: 595 (15.78%) eval detected: 1,502 (11.70%)

OpenCSG 1,141 (0.59%) CWE-502 (Unsafe Deserialization): 5,449 (82.81%) Injection: 616 (30.36%) pickles in pytorch: 4,923 (67.73%)
CWE-676 (Dangerous Function): 451 (6.85%) Integrity Failures: 493 (24.30%) numpy in pytorch: 1,279 (17.60%)
CWE-95 (Eval Injection): 344 (5.23%) Insecure Deserialization: 416 (20.50%) automatic memory pinning: 414 (5.70%)

ModelScope 581 (0.85%) CWE-502 (Unsafe Deserialization): 526 (72.65%) Tnjection: 159 (58.46%) pickles in pytorch: 484 (46.45%)
CWE-95 (Eval Injection): 144 (19.89%) Insecure Deserialization: 38 (13.97%) numpy in pytorch: 351 (33.69%)
CWE-706 (Incorrectly-Resolved Name): 28 (3.87%) Integrity Failures: 38 (13.97%) eval detected: 143 (13.72%)

OpenMM~Lab 2 (12.50%) CWE-502 (Unsafe Deserialization): 8 (61.54%) Insecure Deserialization: 8 (38.10%) avoid pickle: 8 (61.54%)

CWE-95 (Eval Injection): 3 (23.08%)
CWE-706 (Incorrectly-Resolved Name): 2 (15.38%)

Integrity Failures: 8 (38.10%)
Injection: 3 (14.29%)

eval detected: 2 (15.38%)
non-literal import: 2 (15.38%)

PyTorch Hub

10 (38.46%) CWE-502 (Unsafe Deserialization): 25 (49.02%)

CWE-95 (Eval Injection): 16 (31.37%)
CWE-676 (Dangerous Function): 5 (9.80%)

Injection (A03:21): 19 (67.86%)
Injection (A01:17): 3 (10.71%)
Insecure Deserialization: 2 (7.14%)

pickles in pytorch: 23 (46.94%)
eval detected: 16 (32.65%)
automatic memory pinning: 5 (10.20%)

Table 4: Top 3 CWE and CodeQL issues across platforms.

Platform __ # Smelly Repo (%) Top 3 CWEs Top 3 Rules
Hugging Face 2,111 (5.87%) CWE-117 (Log Injection): 376 (53.49%) Timing attack against secret: 53,432

CWE-20 (Input Validation): 101 (97.82%)
(14.37%) Log Injection: 376 (0.69%)
CWE-79 (XSS): 98 (13.94%) All Cryptographic Algorithms: 345
(0.637%)
OpenCSG 32 (0.00%) CWE-215 (Debug Info Exposure): 22 Timing attack against secret: 6,031
(23.917%) (94.63%)
CWE-730 (ReDoS): 22 (23.91%) All Cryptographic Algorithms: 140
CWE-79 (XSS): 17 (18.48%) (1.91%)
Hash Algorithms: 140 (1.91%)
ModelScope 169 (0.25%) CWE-20 (Input Validation): 18 (78.26%) Timing attack against secret: 6,571
CWE-116 (Output Encoding): 3 (98.75%)
(13.04%) All Cryptographic Algorithms: 23
CWE-79 (XSS): 2 (8.70%) (0.35%)

Hash Algorithms: 23 (0.35%)

Table 5: Top 3 YARA issues across platforms.

Platform
Hugging Face

Smelly Repo (%) Top 3 Rules
2,924 (8.13%) JT 3D Visualization format: 32,549 (57.72%)
VBox Detection: 7,560 (13.41%)
Qemu Detection: 7,546 (13.38%)
Big Numbers: 70,798 (53.13%)
VMWare Detection: 16,552 (12.42%)
VBox Detection: 15,476 (11.61%)
JT 3D Visualization format: 5,046 (75.16%)
VBox Detection: 524 (7.80%)
Qemu Detection: 524 (7.80%)
Is Suspicious: 38 (35.51%)
TTA lossless compressed audio: 36 (33.64%)
Audio Interchange File Format: 18 (16.82%)
Qemu Detection: 6 (23.08%)
VBox Detection: 6 (23.08%)
VMWare Detection: 6 (23.08%)

OpenCSG 40 (0.00%)

ModelScope 212 (0.31%)

OpenMMLab 12 (75.00%)

PyTorch Hub 3(11.53%)

and VMWare Detection signatures, which collectively account for
more than 95% of all hits. For OpenCSG, the affected repositories
are only 40, but they had similar issues as Hugging Face, in addition
to the cryptographic malware. For ModelScope’s YARA detections
are mainly environmental evasion indicators, such as JT 3D

Visualization format, VBox Detection, and Qemu Detection.

Despite the small size of the ecosystem, OpenMMLab exhibits a
high smelly repo rate of 75.00%, with common YARA including
Is Suspicious (35.51%) and audio file signatures such as TTA and
AIFF. For PyTorch Hub, 11.53% of repositories contained at least one
YARA signature. Its top rules are evenly distributed across Qemu,
VBox, and VMWare Detection (23.08% each).

4.3 RQ3: Platform Mitigation Strategies

Table 6 summarizes the security mechanisms of each platform.

4.3.1 Trust Models and Verification. Platforms exhibit three dis-
tinct trust paradigms. Hugging Face, ModelScope, and PyTorch
Hub follow trust-all models where any user can freely upload
models. Hugging Face augments this with verified badges for orga-
nizational identity (not security audits) [19], while PyTorch Hub
shifts trust decisions to users via the trust_repo parameter [61].
OpenMMLab implements strict verify-first with maintainer review
of all contributions through pull requests [50]. OpenCSG repre-
sents a middle ground with community trust, allowing open uploads
with optional content moderation [44, 47].

Only Hugging Face operates comprehensive automated security
scanning, triggering on every push with ClamAV (malware), Pick-
leScan (pickle/RCE), TruffleHog (secrets), plus third-party scanners
(Protect AI Guardian, JFrog) [16, 17, 22]. However, scans target
known patterns rather than comprehensive static analysis, leaving
residual RCE risks [18, 27]. OpenCSG [48], ModelScope [40], and
PyTorch Hub [61] have no documented platform-level automated
scanning. OpenMMLab relies on human review without automated
scanning [49]. No platform implements comprehensive sandboxing
for custom code execution during model loading.

4.3.2 User-Facing Protections. Hugging Face provides the most
comprehensive user protections: verified organizational badges [18],
prominent Ul banners for trust_remote_code=True, file badges (ok/in-
fected), a dedicated security documentation hub [21], and SafeTen-
sors support [16]. However, model card code snippets lack inline
warnings about trust_remote_code risks. PyTorch Hub has docu-
mentation warnings emphasizing that “models are programs” [57]
with interactive prompts via trust_repo [59, 61]. ModelScope
provides only post-download trust_remote_code warnings [9, 39].
OpenCSG includes community guidelines [46] but lacks explicit
trust_remote_code warning documentation. OpenMMLab has no
warnings due to its curated, reviewed model zoo [50, 51].

4.4 ROQ4: Developers’ Concern

From our systematic analysis of developers’ discussions surround-
ing the trust_remote_code mechanism, we derived a taxonomy
of concerns observed across forums, issue trackers, and community
posts (Figure 5) .

Compatibility and Integration Issues. This category represents dis-
cussions where developers report integration failures, incompati-
bilities, or unexpected behavior when enabling the trust flag. These
posts often feature vague complaints such as “it doesn’t work”, “the

760
761
762
763
764
765
766
767
768
769

770

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

Anon.

Table 6: Comparison of security and trust mechanisms across model-sharing platforms verified against official documentation.

Platform

Upload Verification Trust Model

Malware Scanning

Warning Systems User Protection

Hugging Face Automated scanning [16, 17]

Trust-all with verified badges [19]

Yes — comprehensive multi-layered [6, UI warnings, file badges (ok/infected), Documentation hub [21], UI warn-

18] & verified badges [18] ings, SafeTensors support [16]
OpenCSG Open uploads via Git or web [47] Community trust [45] None documented [46] None documented [46] Documentation (community guide-
lines) [46]
ModelScope No platform-level automated scan- Trust-all (no verification) [38] None - no platform-level scan- Post-download trust_remote_code Documentation,
ning documented [37] ning [37] warnings only [9, 39] trust_remote_code parameter [39]

OpenMMLab Maintainer pull-request review [50]

Verify-first [50]

None documented [49]

None documented [49] Documentation (reviewed code) [51]

PyTorch Hub No automated verification [58]

ter [58]

Trust-all with trust_repo parame- None documented [58]

Interactive prompts (trust_repo), Strong documentation warnings:
deprecation warnings [58, 59] “models are programs” [57]

Misunderstanding Trust Semantics
Misconceptions & Confusion Overgeneralization
Flag vs. Revision Confusion
Error Handling & Debugging
Usability & Documentation Flag Placement Confusion
Challenges
Poor Documentation

Desire to Avoid Remote Code|

Long-Term Support Concerns
Expectations for Official
5 Demand for Native Integration
Support and Maintainability o
Deprecation Frustrations
Fear of Malicious Code
Security and Trust Concerns Tritst Model ATbIguy

Pipeline Incompatibility

Platform Deployment Barriers
Version Conflicts

Compatibility and Integration

Leaderboard / Evaluation Constraints
Issues

Execution Manual Workarounds

Figure 5: Taxonomy of Developers’ Concerns.

model fails to load”, or “no support for this flag”, typically accompa-
nied by minimal debugging information.

Pipeline Incompatibility: A recurring sub-theme involves fail-
ures when loading models through pipelines or inference APIs.
Because the trust flag is not consistently propagated through
these abstractions, developers experience silent failures or partial
functionality, requiring non-trivial debugging. These cases often
reveal architectural gaps between the core model loaders and
downstream pipeline wrappers.

Platform Deployment Barriers: Many developers face diffi-
culties deploying trust-dependent models on managed hosting
platforms such as SageMaker, Inference Endpoints, or custom
cloud containers. Restrictions on executing remote code, secu-
rity sandboxing, and the lack of explicit trust flag support in
deployment configurations contribute to deployment dead ends.
Version Conflicts: Another dominant sub-pattern involves ver-
sioning issues. Breakages often occur due to mismatches between
the installed library version and the model’s expected environ-
ment. Posts frequently cite outdated transformers packages,
missing backward compatibility, or changes in the trust flag’s
default behavior across versions. These issues can cascade as
small version drifts can break complex pipelines.

Desire to Avoid Remote Code Execution. This category captures dis-
cussions where developers explicitly express their reluctance or
refusal to enable the trust flag. Unlike compatibility issues, these
concerns stem from security or policy perspectives, or from a gen-
eral mistrust of executing third-party code.

Leaderboard / Evaluation Constraints: In competitive or
benchmarking contexts, enabling trust flags is sometimes ex-
plicitly forbidden. This restriction stems from fairness, repro-
ducibility, or sandboxing requirements, forcing developers to
look for alternative workarounds.

Manual Workarounds: Developers frequently fork repositories,
manually download and edit model files, or patch library inter-
nals to bypass trust requirements. While these ad-hoc solutions

may allow immediate progress, they introduce technical debt,
security uncertainty, and maintenance challenges downstream.

Expectations for Official Support and Maintainability. We found
discussions that showed expectations from the community for up-

I3

stream maintainers and platform providers to “just make it work”.
This category reflects the expectation gap between what develop-
ers assume the trust flag should offer (automatic, safe, supported
execution) and what is actually implemented (manual flag toggling,
fragmented support, and inconsistent documentation).

Demand for Native Integration: Developers requested that
maintainers integrate model-specific custom code directly into
official libraries, thereby removing the need for explicit trust flags.
This reflects a preference for official, standardized mechanisms
over user-managed trust settings.

Deprecation Frustrations: As the trust mechanism and related
APIs evolve, developers face broken pipelines and inconsistent
behavior. Complaints in this sub-category often highlight insuf-
ficient deprecation notices, breaking changes without migration
guides, and a lack of backward compatibility.

Long-Term Support Concerns: Developers working in produc-
tion environments or regulated domains express concern over
whether trust-based model integrations will remain viable in the
future. These concerns are often tied to compliance, maintenance,
and stability over multiple product cycles.

Misconceptions and Confusion. Not all developer challenges arise
from genuine technical limitations. Some stemmed from an in-
complete or incorrect understanding of how trust_remote_code
operates.

Flag vs. Revision Confusion: Developers often conflate the
trust flag with revision pinning or version control, mistakenly
believing that setting a revision automatically enables trust or
vice versa.

Misunderstanding Trust Semantics: Many users incorrectly
assume that enabling the flag merely grants permission for meta-
data loading, not remote code execution. This misinterpretation
may lead to underestimating security implications or failing to
configure environments correctly.

Overgeneralization: Another common misconception involves
assuming that the trust flag behaves uniformly across all model
architectures and frameworks. In practice, its support is uneven,
leading to mismatched expectations and implementation failures.

Security and Trust Concerns. It represents a distinct and high-stakes
theme in developer discourse. Here, developers explicitly reference
potential or perceived security risks associated with enabling trust

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems

flags. Unlike the “Desire to Avoid RCE” category, which is attitudi-
nal, this category focuses on explicit threat articulation.

e Fear of Malicious Code: Developers express concerns about ar-
bitrary code execution, supply chain compromises, or untrusted
contributors injecting malicious payloads. These discussions fre-
quently reference standard security practices, organization-level
security policies, or compliance concerns.

o Trust Model Ambiguity: Many developers do not fully under-
stand what “trusting” a model entails at the technical level (e.g.,
which parts of the repository are executed, what isolation exists,
or what verification is done). This lack of transparency fuels
suspicion and defensive behavior.

Usability and Documentation Challenges. Even when the trust mech-
anism works as intended, poor documentation, unclear error mes-
sages, or confusing flag placement can create technical barriers.

e Error Handling & Debugging: Many developers encounter
non-informative or misleading error messages when enabling or
failing to enable the trust flag. These debugging hurdles often
prolong troubleshooting cycles.

o Flag Placement Confusion: Developers frequently struggle to
identify where the trust flag should be set (e.g., in CLI arguments,
in pipeline calls, or at model initialization), especially when
documentation is inconsistent across versions.

e Poor Documentation: We found posts citing missing, incom-
plete, or outdated documentation, a lack of minimal working
examples, and inconsistent terminology.

5 Discussion

5.1 Ecosystem-wide Security Exposure

Our findings (Table 1) show that the model-sharing ecosystem
is broadly and unevenly exposed to security risks. While only
2-4% of models on platforms such as Hugging Face, ModelScope,
and OpenCSG require custom code, this seemingly small subset rep-
resents around 45,000 repositories containing code executed at load
time. Platforms such as OpenMMLab and PyTorch Hub rely entirely
on custom code, increasing their systemic attack surface.

Static analysis with Bandit and Semgrep identified two major vul-
nerability clusters. First, low-severity but pervasive coding smells
(e.g., CWE-703, B101 assert statements) appear across 60-80% of
affected repositories, reflecting weak defensive programming prac-
tices. Second, high-impact injection and deserialization vul-
nerabilities (e.g., CWE-502, CWE-95, CWE-78) were widespread,
particularly on PyTorch Hub and Hugging Face, where dynamic
code execution via pickle and eval is common. Semgrep analysis
identified injection and insecure deserialization as the top OWASP
categories, underscoring systemic risks of arbitrary code execution
at model load time. Notably, the dominance of CWE-117 and CWE-
20 in CodeQL results reinforces our observation of low-severity but
pervasive security smells across the ecosystem. Although CWE-117
issues may seem benign, their combination with insecure crypto-
graphic patterns and unvalidated inputs increases the attack surface.
Our CodeQL analysis further underscores the uneven security
exposure across model-sharing platforms (Table 4). We found a
pattern of cryptographic weaknesses: nearly all flagged repositories

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

(over 97%) contain “Timing attack against secret” issues, a Cod-
eQL rule that typically signals missing constant-time operations or
insecure key handling. While these findings may not always indi-
cate immediately exploitable flaws, their pervasiveness reflects weak
default security hygiene in model repository codebases.

Importantly, these exposures are not uniform. OpenCSG, despite
a low percentage of smelly repos, contributes the highest abso-
lute number of issues due to its massive scale. PyTorch Hub, with
a smaller ecosystem, has a disproportionately high rate of high-
severity issues, highlighting differences in platform trust boundaries
and code review practices.

5.2 Gaps Between Security Mechanisms and
Developer Practices

The analysis of platform security mechanisms (Table 6) reveals
a misalignment between available safeguards and how de-
velopers interact with model repositories. Hugging Face, for
instance, operates the most advanced malware scanning pipeline,
yet unsafe practices persist widely, including reliance on pickle
serialization and unpinned revision loading. The presence of CWE-
502 and CWE-95 in hundreds of repositories demonstrates that
technical defenses alone are insufficient to change devel-
oper behavior. Similarly, ModelScope issues warning banners for
trust_remote_code but lacks sandboxing or pre-upload verifica-
tion, allowing risky code to propagate. OpenCSG and PyTorch Hub
provide minimal automated scanning, relying instead on commu-
nity trust or basic user prompts (trust_repo). The high concentra-
tion of injection- and eval-based vulnerabilities in the PyTorch Hub
underscores the risks of such lightweight defenses. Furthermore,
the low adoption of secure formats such as Safetensors (only 6.6%
on Hugging Face as of August 2025) shows that safer alternatives
are not being embraced at scale, often due to developer inertia,
ecosystem lock-in, or lack of clear incentives.

5.3 Results Implications

Our findings have implications for both academia and industry.

For Platform Operators. Platforms must move beyond passive warn-
ing systems toward enforced security boundaries, including
default sandboxing of untrusted custom code, mandatory integrity
checks, and stricter upload verification workflows. Richer developer-
facing telemetry (e.g., inline vulnerability alerts, dependency prove-
nance) can bridge the gap between automated scanning and practi-
cal adoption of secure practices.

For Developers and Maintainers. The results emphasize that devel-
opers play a decisive role in the security posture of model hubs.
Reliance on pickle and eval-based code should be minimized or
replaced with safe loading alternatives. Incorporating secure de-
faults, revision pinning, and code review checklists can help reduce
CWE hotspots such as CWE-502 and CWE-95.

For Researchers. Our work showed that though platforms used
shared libraries underneath, they have significant differences in
handling custom code in model loading. There needs to be work on
automated enforcement frameworks for trust boundaries, inte-
grating cryptographic integrity verification with runtime isolation.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

Our results indicate that tools such as CodeQL can reveal deep
structural weaknesses in model repository ecosystems that are
not surfaced by conventional scanners alone. This creates opportu-
nities for building automated enforcement frameworks that couple
vulnerability scanning with upload-time checks, runtime sandbox-
ing, and integrity enforcement. Future work can also examine the
adoption barriers for secure coding practices, especially around
cryptographic operations, to close the gap between warnings and
actionable defenses.

5.4 Threats to Validity

Internal Validity. A primary internal threat lies in the accuracy and
completeness of our static analysis. Although we employed three
well-established tools—Bandit, CodeQL, and Semgrep—to identify
security smells and CWE patterns, they may produce false positives
or false negatives. However, Siddiq et al. show Bandit has 90.79%
precision [65]. Semgrep, CodeQL, and YARA are widely used in
the research community [2, 14, 31, 33, 41, 42, 66, 67]. Moreover, we
manually analyzed discussion posts to conduct open-coding. As
mentioned before, this coding was conducted collaboratively by the
two authors, whose software development experience ranged from
4 to 12 years, with disagreements resolved by the senior author.
The Cohen’s kappa score is 0.50, indicating a “moderate” level of
agreement [7].

External Validity. Our results may not fully generalize beyond the
platforms studied. We focused on five major platforms—Hugging
Face, OpenCSG, ModelScope, OpenMMLab, and PyTorch Hub—that
dominate the model-sharing ecosystem. For example, Hugging
Face hosts around 1.7 million models, and OpenCSG hosts around
200k models. Smaller or private repositories (e.g., enterprise model
registries) may exhibit different security characteristics.

6 Related Work

Evolution of Model Hosting Platforms and Pipelines. The evolution
from localized model development to centralized sharing platforms
constitutes a shift to collaborative ML practices. In the early stages,
researchers relied on manual distribution via institutional web-
sites or GitHub repositories, requiring end users to rebuild the
entire training and execution environment to reproduce results.
The first generation of organized model distribution are mainly
Caffe (2014) and TensorFlow Hub (2018). With PyTorch Hub created
in 2019, the torch.hub.load() interface was also released along
with the trust_repo parameter [58]. The rapid expansion of Hug-
ging Face between 2018 and 2023 further reshaped the landscape:
evolving from a simple hosting repository to a fully integrated plat-
form supporting training, inference, and deployment workflows. Yi
et al. [71] provides a comprehensive analysis of this ecosystem’s
development, showing how model hubs have become critical infras-
tructure sustaining millions of models and billions of downloads
worldwide. This infrastructural transformation is further quanti-
fied by Laufer et al. , by analyzing two million models hosted on
Hugging Face [34]. Their findings highlight the platform’s support
for over 4,000 distinct architectures, with an increasing proportion
of models depending on custom code to enable advanced function-
ality beyond standard implementations. Our work focuses on the

10

Anon.

architectural design of executing code during model loading from
the hub.

Quality and security issues of Model Hubs. Jiang et al. [30] conducted
the first systematic study of these artifacts across eight platforms,
revealing that trust relationships in model ecosystems are more
implicit and poorly understood than in traditional software. Hu et
al. . [15] identifies open problems in the LLM supply chain, docu-
menting how fine-tuning workflows, adapter layers, and prompt
templates all serve as injection points. Yi et al. [71] further charac-
terizes these risks from an edge-computing perspective, showing
how LLM-integrated platforms create new trust boundaries among
cloud services, edge devices, and end users.

The introduction of weights_only=True in PyTorch 1.13 [59] and
the trust_remote_code flag in Transformers 4.0 [23] represent ac-
knowledgments of the risks, but adoption remains low due to com-
patibility concerns. Alternative serialization approaches exhibit
different trade-offs between security and functionality. SafeTensors,
introduced by Hugging Face in 2022 [26], uses a simple header-data
format that prevents code execution entirely. The format stores
tensors in a flat layout with minimal metadata, enabling zero-copy
loading while eliminating executable payloads. However, as our
results show and Laufer et al. . confirm [34], only 6.6% of models
have adopted this format despite platform encouragement. Recent
work on secure deserialization provides partial solutions.

While platform owners use scanners to identify vulnerable code
and data, Zhao et al. ’s deployment of MalHug [72] identified 91
malicious models and 9 dataset scripts actively exploiting users.
JFrog Security Research [29] documented evasion methods that
bypass pattern-based scanning, including time-delayed execution,
environment fingerprinting, and polymorphic code generation. The
August 2025 Protect Al report [55], based on scanning 4.47 million
model versions, identifies emerging threats, such as archive slip
vulnerabilities and TensorFlow-specific backdoors, that existing
tools miss. Our work specifically focuses on the code associated with
the model, which is executed during loading, and on developers’
concerns about it.

7 Conclusion

Our work provides the first large-scale, cross-platform empirical
analysis of remote code execution risks in ML model hosting ecosys-
tems, examining five major platforms. We identified that around
45,000 repositories execute arbitrary code during model loading.
Our static analysis evealed most repositories have weak defensive
coding practices, and injection and deserialization vulnerabilities
(e.g., CWE-502, CWE-95, CWE-78. We also found that most of the
malicious code in the category of environmental evasion indicators
(e.g., Qemu, VMWare, VBox detections). Although Hugging Face
has made significant advances with automated malware scanning
pipelines (e.g., ClamAV, PickleScan, Protect Al Guardian), these
mechanisms alone are insufficient. Other platforms lack compara-
ble safeguards, with minimal or no sandboxing and weak verifica-
tion mechanisms. Developer discussions further reveal widespread
confusion and misconceptions about trust flags, limited adoption of
secure serialization formats like SafeTensors, and tension between
usability and security.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145

https://caffe.berkeleyvision.org/

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

An Empirical Study on Remote Code Execution in Machine Learning Model Hosting Ecosystems

References

(1]

(2]

(3]

=

[12]

[13

[14]

[15

[16

[17]

[18

[19]

™
=

[21

[22]

[23

[24]

[25

[26]

[27

[28]

Anonymous. 2025. Replication Package: Untrusted Model Loading. https://
anonymous.4open.science/r/untrusted-model-loading- C8BC/README.md. Ac-
cessed: 2025-10-24.

Gareth Bennett, Tracy Hall, Emily Winter, and Steve Counsell. 2024. Semgrep*:
Improving the limited performance of static application security testing (sast)
tools. In Proceedings of the 28th International Conference on Evaluation and As-
sessment in Software Engineering. 614-623.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
Advances in Neural Information Processing Systems 33 (2020), 1877-1901.
Beatrice Casey, Kaia Damian, Andrew Cotaj, and Joanna Santos. 2025. An
Empirical Study of Safetensors’ Usage Trends and Developers’ Perceptions. arXiv
preprint arXiv:2501.02170 (2025).

Beatrice Casey, Joanna Santos, and Mehdi Mirakhorli. 2024. A large-scale exploit
instrumentation study of AI/ML supply chain attacks in hugging face models.
arXiv preprint arXiv:2410.04490 (2024).

Cisco. 2024. Foundation AI Advances AI Security With Hugging
Face. https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai- supply-
chain-security-with-hugging-face. Accessed: 2025-10-10.

Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Ed-
ucational and Psychological Measurement 20, 1 (1960), 37-46. doi:10.1177/
001316446002000104

Juliet Corbin and Anselm Strauss. 1990. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications.

EvalScope. 2024. FAQ. https://evalscope.readthedocs.io/en/v0.16.3/get_started/
faq.html. Accessed: 2025-10-10.

Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA.

Mohammad Ghafari, Pascal Gadient, and Oscar Nierstrasz. 2017. Security smells
in android. In 2017 IEEE 17th international working conference on source code
analysis and manipulation (SCAM). IEEE, 121-130. doi:10.1109/SCAM.2017.24
GitHub Security Lab. 2025. CodeQL Query Packs. https://securitylab.github.
com/tools/codeql/. Accessed: 2025-10-23.

GitHub Security Lab. 2025. CodeQL: Semantic Code Analysis Engine. https:
//codeql.github.com. Query-based code analysis engine for discovering vulnera-
bilities. Accessed: October 2025.

Damian Gnieciak and Tomasz Szandala. 2025. Large Language Models Versus
Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection.
arXiv:2508.04448 [cs.SE] https://arxiv.org/abs/2508.04448

Zuxin Hu, Ning Liu, Tian Zhao, Fan Yang, Xiaowei Deng, Ting Du, Jian Chen,
Zongwei Li, and Xiaolong Fan. 2025. Large Language Model Supply Chain: Open
Problems from the Security Perspective. In Proceedings of the 32nd ACM Con-
ference on Computer and Communications Security. Association for Computing
Machinery. doi:10.1145/3713081.3731747

Hugging Face. 2024. 2024 Security Feature Highlights. https://huggingface.co/
blog/2024-security-features. Accessed: 2025-10-10.

Hugging Face. 2024. Hugging Face Partners with TruffleHog to Scan for Secrets.
https://huggingface.co/blog/trufflesecurity-partnership. Accessed: 2025-10-10.
Hugging Face. 2024. Malware Scanning. https://huggingface.co/docs/hub/en/
security-malware. Accessed: 2025-10-10.

Hugging Face. 2024. Organization Verification. https://discuss.huggingface.co/t/
organization-verification/17906. Accessed: 2025-10-10.

Hugging Face. 2024. Pickle Scanning. https://huggingface.co/docs/hub/en/
security-pickle. Accessed: 2025-10-10.

Hugging Face. 2024. Security. https://huggingface.co/docs/hub/en/security.
Accessed: 2025-10-10.

Hugging Face. 2024. Security & Compliance. https://huggingface.co/docs/
microsoft-azure/en/security. Accessed: 2025-10-10.

Hugging Face. 2025. Auto Classes. https://huggingface.co/docs/transformers/en/
model_doc/auto. Accessed: 2025-10-10.

Hugging Face. 2025. Customizing models — Transformers Documentation.
https://huggingface.co/docs/transformers/en/custom_models Accessed: 2025-10-
13.

Hugging Face. 2025. Hugging Face Model Hub. https://huggingface.co. Total
models: 1,699,968. Accessed: October 2025.

Hugging Face. 2025. Safetensors Documentation. https://huggingface.co/docs/
safetensors/index. Accessed: 2025-10-10.

Hugging Face. 2025. Secrets Scanning. https://huggingface.co/docs/hub/en/
security-secrets. Accessed: 2025-10-10.

InQuest Labs. 2025. Awesome YARA: A Curated Repository of YARA Rule
Sources. https://github.com/InQuest/awesome-yara?tab=readme-ov-file#rules.

11

[29]

[30

[32

(33]

(34]

@
2

[36

(37]
(38]
(39]
[40]

[41]

[42

[44

[45

[46]

[48

[49

[50

[51

[52]

[54]

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

Accessed: 2025-10-23.

JFrog Security Research. 2024. Examining Malicious Hugging Face ML Mod-
els with Silent Backdoors. https://jfrog.com/blog/data-scientists-targeted-by-
malicious-hugging-face-ml-models-with-silent-backdoor/. Accessed: 2025-10-
10.

Shanggqing Jiang, Nicholas Synovic, Chahat Sethi, Sandeep Indarapu, Parker
Hyatt, Marco Schorlemmer, George Thiruvathukal, and James C. Davis. 2022.
An Empirical Study of Artifacts and Security Risks in the Pre-trained Model
Supply Chain. In Proceedings of the 2022 ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses. Association for Computing
Machinery, 105-114. doi:10.1145/3560835.3564547

Bjernar Haugstad Jatten, Simon Boye Jorgensen, Rasmus Petersen, and Raul
Pardo. 2025. Scalable Thread-Safety Analysis of Java Classes with CodeQL.
arXiv:2509.02022 [cs.SE] https://arxiv.org/abs/2509.02022

Andreas D. Kellas, Neophytos Christou, Wenxin Jiang, Penghui Li, Laurent
Simon, Yaniv David, Vasileios P. Kemerlis, James C. Davis, and Junfeng Yang.
2025. PickleBall: Secure Deserialization of Pickle-based Machine Learning Models
(Extended Report). https://arxiv.org/abs/2508.15987. arXiv:2508.15987.

Lukas Kree, René Helmke, and Eugen Winter. 2024. Using semgrep oss to find
owasp top 10 weaknesses in php applications: A case study. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 64-83.

Benjamin Laufer, Hamidah Oderinwale, and Jon Kleinberg. 2025. Anatomy of a
Machine Learning Ecosystem: 2 Million Models on Hugging Face. arXiv (2025).
arXiv:2508.06811 [cs.SI] https://arxiv.org/abs/2508.06811 Accessed: 2025-10-10.
Victor Alvarez Martin. 2014. YARA: The pattern matching swiss knife for mal-
ware researchers. https://virustotal.github.io/yara/. Accessed: 2025-10-23.
MITRE Corporation. 2025. Common Weakness Enumeration (CWE). https:
//cwe.mitre.org. A community-developed list of common software and hardware
weakness types. Accessed: October 2025.

ModelScope. 2024. ModelScope: Bring the Notion of Model-as-a-Service to Life.
https://github.com/modelscope/modelscope. Accessed: 2025-10-10.
ModelScope. 2024. Phi-3-mini-128k-instruct. https://modelscope.cn/models/
LLM-Research/Phi-3-mini- 128k-instruct. Accessed: 2025-10-10.

ModelScope. 2024. Releases. https://github.com/modelscope/modelscope/
releases. Accessed: 2025-10-10.

ModelScope. 2025. ModelScope Model Hub. https://modelscope.cn. Total models:
68,736. Accessed: October 2025.

Nitin Naik, Paul Jenkins, Roger Cooke, Jonathan Gillett, and Yaochu Jin. 2020.
Evaluating automatically generated YARA rules and enhancing their effective-
ness. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
1146-1153.

Nitin Naik, Paul Jenkins, Nick Savage, Longzhi Yang, Tossapon Boongoen,
Natthakan Iam-On, Kshirasagar Naik, and Jingping Song. 2021. Embedded
YARA rules: strengthening YARA rules utilising fuzzy hashing and fuzzy rules
for malware analysis. Complex & Intelligent Systems 7, 2 (2021), 687-702.
OpenAl 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774.
OpenCSG. 2024. csghub-server. https://github.com/OpenCSGs/csghub-server.
Accessed: 2025-10-10.

OpenCSG. 2024. Information about the OpenCSG community. https://github.
com/OpenCSGs/community. Accessed: 2025-10-10.

OpenCSG. 2024. OpenCSG Documentation Center. https://www.opencsg.com/
docs/en/. Accessed: 2025-10-10.

OpenCSG. 2024. Uploading Codes. https://www.opencsg.com/docs/en/code/
upload_codes. Accessed: 2025-10-10.

OpenCSG. 2025. OpenCSG Model Hub. https://opencsg.com. Total models:
192,556. Accessed: October 2025.

OpenMMLab. 2024. Benchmark and Model Zoo - MMDetection’s documentation.
https://mmdetection.readthedocs.io/en/latest/model_zoo.html. Accessed: 2025-
10-10.

OpenMMLab. 2024. Contribution Guide - MMDetection3D 1.4.0 documenta-
tion. https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.
html. Accessed: 2025-10-10.

OpenMMLab. 2024. OpenMMLab Detection Toolbox and Benchmark. https:
//github.com/open-mmlab/mmdetection. Accessed: 2025-10-10.

OpenMMLab. 2025. OpenMMLab Model Zoo. https://openmmlab.com. Total
models: 16. Accessed: October 2025.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. arXiv preprint
arXiv:2203.02155 (2022).

José Pereira dos Reis, Fernando Brito e Abreu, Glauco de Figueiredo Carneiro,
and Craig Anslow. 2022. Code Smells Detection and Visualization: A Systematic
Literature Review. Archives of Computational Methods in Engineering 29, 1 (Jan.
2022), 47-94. doi:10.1007/s11831-021-09566-x

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

https://anonymous.4open.science/r/untrusted-model-loading-C8BC/README.md
https://anonymous.4open.science/r/untrusted-model-loading-C8BC/README.md
https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai-supply-chain-security-with-hugging-face
https://blogs.cisco.com/security/ciscos-foundation-ai-advances-ai-supply-chain-security-with-hugging-face
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://evalscope.readthedocs.io/en/v0.16.3/get_started/faq.html
https://evalscope.readthedocs.io/en/v0.16.3/get_started/faq.html
https://doi.org/10.1109/SCAM.2017.24
https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://codeql.github.com
https://codeql.github.com
https://arxiv.org/abs/2508.04448
https://arxiv.org/abs/2508.04448
https://doi.org/10.1145/3713081.3731747
https://huggingface.co/blog/2024-security-features
https://huggingface.co/blog/2024-security-features
https://huggingface.co/blog/trufflesecurity-partnership
https://huggingface.co/docs/hub/en/security-malware
https://huggingface.co/docs/hub/en/security-malware
https://discuss.huggingface.co/t/organization-verification/17906
https://discuss.huggingface.co/t/organization-verification/17906
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/hub/en/security
https://huggingface.co/docs/microsoft-azure/en/security
https://huggingface.co/docs/microsoft-azure/en/security
https://huggingface.co/docs/transformers/en/model_doc/auto
https://huggingface.co/docs/transformers/en/model_doc/auto
https://huggingface.co/docs/transformers/en/custom_models
https://huggingface.co
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/hub/en/security-secrets
https://huggingface.co/docs/hub/en/security-secrets
https://github.com/InQuest/awesome-yara?tab=readme-ov-file#rules
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://doi.org/10.1145/3560835.3564547
https://arxiv.org/abs/2509.02022
https://arxiv.org/abs/2509.02022
https://arxiv.org/abs/2508.15987
https://arxiv.org/abs/2508.06811
https://arxiv.org/abs/2508.06811
https://virustotal.github.io/yara/
https://cwe.mitre.org
https://cwe.mitre.org
https://github.com/modelscope/modelscope
https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct
https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct
https://github.com/modelscope/modelscope/releases
https://github.com/modelscope/modelscope/releases
https://modelscope.cn
https://github.com/OpenCSGs/csghub-server
https://github.com/OpenCSGs/community
https://github.com/OpenCSGs/community
https://www.opencsg.com/docs/en/
https://www.opencsg.com/docs/en/
https://www.opencsg.com/docs/en/code/upload_codes
https://www.opencsg.com/docs/en/code/upload_codes
https://opencsg.com
https://mmdetection.readthedocs.io/en/latest/model_zoo.html
https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.html
https://mmdetection3d.readthedocs.io/en/latest/notes/contribution_guides.html
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://openmmlab.com
https://doi.org/10.1007/s11831-021-09566-x

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

MSR °26, April 12-18, 2026, Rio de Janeiro, Brazil

[55]

[56]

[57]

[58

[59]

=
)

[61

[62

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72

Protect AL 2025. 4M Models Scanned: Hugging Face + Protect Al Partnership
Update. https://protectai.com/blog/hugging-face-protect-ai-six-months-in. Ac-
cessed: 2025-10-10.

PyCQA. 2025. Bandit: Security Linter for Python Source Code. https://bandit.
readthedocs.io. Static analysis tool for detecting common security issues in
Python code. Accessed: October 2025.

PyTorch. 2024. Security Policy - pytorch/pytorch. https://github.com/pytorch/
pytorch/security. Accessed: 2025-10-10.

PyTorch. 2024. torch.hub - PyTorch 2.8 documentation. https://pytorch.org/
docs/stable/hub.html. Accessed: 2025-10-10.

PyTorch. 2024. torch.load(..., weights_only=True) currently raises a warning.
https://github.com/pytorch/pytorch/issues/52181. Accessed: 2025-10-10.
PyTorch. 2025. torch.hub — PyTorch Documentation. https://docs.pytorch.org/
docs/stable/hub.html Accessed: 2025-10-13.

PyTorch Contributors. 2025. pytorch/pytorch: Tensors and Dynamic neural
networks in Python with strong GPU acceleration. https://github.com/pytorch/
pytorch. Accessed: 2025-10-21.

r2c. 2025. Semgrep: Lightweight Static Analysis for Modern Languages. https://
semgrep.dev. Open-source static analysis tool supporting pattern-based security
and compliance checks. Accessed: October 2025.

Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven Sins: Security
Smells in Infrastructure as Code Scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 164-175.
doi:10.1109/ICSE.2019.00033

Md Rayhanur Rahman, Akond Rahman, and Laurie Williams. 2019. Share, But
be Aware: Security Smells in Python Gists. In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 536-540. doi:10.1109/ICSME.
2019.00087

Mohammed Latif Siddiq, Shafayat Hossain Majumder, Maisha Rahman Mim,
Sourov Jajodia, and Joanna C.S. Santos. 2022. An Empirical Study of Code
Smells in Transformer-based Code Generation Techniques. In 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation
(SCAM).

Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. SecurityEval Dataset:
Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Gen-
eration Techniques. In Proceedings of the 1st International Workshop on Min-
ing Software Repositories Applications for Privacy and Security (Singapore, Sin-
gapore). Association for Computing Machinery, New York, NY, USA, 29-33.
doi:10.1145/3549035.3561184

Mohammed Latif Siddiq, Joanna C. S. Santos, Sajith Devareddy, and Anna Muller.
[n.d.]. SALLM: Security Assessment of Generated Code. In Proceedings of the
39th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW °24) (Sacramento, CA, USA) (ASEW ’24). 12 pages. doi:10.1145/
3691621.3694934

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000-6010.

VirusTotal. 2025. YARA: Pattern Matching Swiss Knife for Malware Re-
searchers. https://github.com/virustotal/yara?tab=readme- ov-file#additional-
resources. Accessed: 2025-10-23.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Lin-
guistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-demos.6
Wenxin Yi, Dinh Phung Luu, Kangyu Ma, Jiayi Wang, Xiaowei Deng, Ruoxi Fu,
Jiajing Chen, Zongwei Li, Wenxuan Yu, Yue Wang, Philip Khang, Fan Yang, Yue
Zhang, and Yuanyuan Fang. 2024. Characterizing and Understanding the Risks
of Large Language Model-Integrated Platforms: A Supply-Chain Perspective
on the Security of Edge LLM Systems. arXiv (2024). arXiv:2409.09368 [cs.CR]
https://arxiv.org/abs/2409.09368 arXiv:2409.09368v1.

Jian Zhao, Shenao Wang, Yanjie Zhao, Xinyi Hou, Kailong Wang, Peiming Gao,
Yuanchao Zhang, Chen Wei, and Haoyu Wang. 2024. Models Are Codes: Towards
Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs. In
Proceedings of the 39th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Sacramento, CA, USA) (ASE "24). Association for Computing
Machinery, New York, NY, USA, 2087-2098. doi:10.1145/3691620.3695271

12

Anon.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://protectai.com/blog/hugging-face-protect-ai-six-months-in
https://bandit.readthedocs.io
https://bandit.readthedocs.io
https://github.com/pytorch/pytorch/security
https://github.com/pytorch/pytorch/security
https://pytorch.org/docs/stable/hub.html
https://pytorch.org/docs/stable/hub.html
https://github.com/pytorch/pytorch/issues/52181
https://docs.pytorch.org/docs/stable/hub.html
https://docs.pytorch.org/docs/stable/hub.html
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://semgrep.dev
https://semgrep.dev
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1145/3549035.3561184
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934
https://github.com/virustotal/yara?tab=readme-ov-file#additional-resources
https://github.com/virustotal/yara?tab=readme-ov-file#additional-resources
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2409.09368
https://arxiv.org/abs/2409.09368
https://doi.org/10.1145/3691620.3695271

	Abstract
	1 Introduction
	2 Background
	2.1 Model Loading with Executable Code
	2.2 Code Smells & Security Smells
	2.3 Threat Model

	3 Methodology
	3.1 Research Questions (RQs)
	3.2 Platform Selection
	3.3 Model Repositories Selection
	3.4 Security Smell, Vulnerability, and Malicious Payload Analysis
	3.5 Platform Mitigation
	3.6 Developers’ Concerns

	4 Results
	4.1 RQ1: Prevalence of Custom Models
	4.2 RQ2: Security Analysis
	4.3 RQ3: Platform Mitigation Strategies
	4.4 RQ4: Developers' Concern

	5 Discussion
	5.1 Ecosystem-wide Security Exposure
	5.2 Gaps Between Security Mechanisms and Developer Practices
	5.3 Results Implications
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

